RESEARCH ARTICLE

Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals

  • Ying-Tao Zhao ,
  • Maria Fasolino ,
  • Zhaolan Zhou
Expand
  • Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA

Received date: 05 May 2016

Accepted date: 21 Jun 2016

Published date: 30 Aug 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

BACKGROUND: Epigenomic reconfiguration, including changes in DNA methylation and histone modifications, is crucial for the differentiation of embryonic stem cells (ESCs) into somatic cells. However, the extent to which the epigenome is reconfigured and the interplay between components of the epigenome during cellular differentiation remain poorly defined.

METHODS: We systematically analyzed and compared DNA methylation, various histone modification, and transcriptome profiles in ESCs with those of two distinct types of somatic cells from human and mouse.

RESULTS: We found that global DNA methylation levels are lower in somatic cells compared to ESCs in both species. We also found that 80% of regions with histone modification occupancy differ between human ESCs and the two human somatic cell types. Approximately 70% of the reconfigurations in DNA methylation and histone modifications are locus- and cell type-specific. Intriguingly, the loss of DNA methylation is accompanied by the gain of different histone modifications in a locus- and cell type-specific manner. Further examination of transcriptional changes associated with epigenetic reconfiguration at promoter regions revealed an epigenetic switching for gene regulation—a transition from stable gene silencing mediated by DNA methylation in ESCs to flexible gene repression facilitated by repressive histone modifications in somatic cells.

CONCLUSIONS: Our findings demonstrate that the epigenome is reconfigured in a locus- and cell type-specific manner and epigenetic switching is common during cellular differentiation in both human and mouse.

Cite this article

Ying-Tao Zhao , Maria Fasolino , Zhaolan Zhou . Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals[J]. Frontiers in Biology, 2016 , 11(4) : 311 -322 . DOI: 10.1007/s11515-016-1411-5

Acknowledgements

We thank members of the Zhou laboratory for discussions and comments and the ENCODE Consortium and NIH Roadmap Epigenomics Mapping Consortium for availability of data sets. This work was funded by grants from the National Institutes of Health (R01MH091850 to Z.Z.), and Z.Z. is a Pew scholar in biomedical sciences.

Compliance with ethics guidelines

Ying-Tao Zhao, Maria Fasolino and Zhaolan Zhou declares that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.
1
Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen H F, John R M, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher A G (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 8(5): 532–538

DOI PMID

2
Ball M P, Li J B, Gao Y, Lee J H, LeProust E M, Park I H, Xie B, Daley G Q, Church G M (2009). Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol, 27(4): 361–368

DOI PMID

3
Ben-Shushan E, Pikarsky E, Klar A, Bergman Y (1993). Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region. Mol Cell Biol, 13(2): 891–901

DOI PMID

4
Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate- a practical and powerful approach to multiple testing. J Roy Stat Soc B Met, 57: 289–300

5
Berger S L (2007). The complex language of chromatin regulation during transcription. Nature, 447(7143): 407–412

DOI PMID

6
Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber S L, Lander E S (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2): 315–326

DOI PMID

7
Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21

DOI PMID

8
Deb-Rinker P, Ly D, Jezierski A, Sikorska M, Walker P R (2005). Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J Biol Chem, 280(8): 6257–6260

DOI PMID

9
Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T R (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1): 15–21

DOI PMID

10
Gifford C A, Ziller M J, Gu H, Trapnell C, Donaghey J, Tsankov A, Shalek A K, Kelley D R, Shishkin A A, Issner R, Zhang X, Coyne M, Fostel J L, Holmes L, Meldrim J, Guttman M, Epstein C, Park H, Kohlbacher O, Rinn J, Gnirke A, Lander E S, Bernstein B E, Meissner A (2013). Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell, 153(5): 1149–1163

DOI PMID

11
Hawkins R D, Hon G C, Lee L K, Ngo Q, Lister R, Pelizzola M, Edsall L E, Kuan S, Luu Y, Klugman S, Antosiewicz-Bourget J, Ye Z, Espinoza C, Agarwahl S, Shen L, Ruotti V, Wang W, Stewart R, Thomson J A, Ecker J R, Ren B (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell, 6(5): 479–491

DOI PMID

12
Heinz S, Benner C, Spann N, Bertolino E, Lin Y C, Laslo P, Cheng J X, Murre C, Singh H, Glass C K (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell, 38(4): 576–589

DOI PMID

13
Hon G C, Hawkins R D, Caballero O L, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall L E, Camargo A A, Stevenson B J, Ecker J R, Bafna V, Strausberg R L, Simpson A J, Ren B (2012). Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res, 22(2): 246–258

DOI PMID

14
Hon G C, Rajagopal N, Shen Y, McCleary D F, Yue F, Dang M D, Ren B (2013). Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet, 45(10): 1198–1206

DOI PMID

15
Huang W, Sherman B T, Lempicki R A (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37(1): 1–13

DOI PMID

16
Huang W, Sherman B T, Lempicki R A (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1): 44–57

DOI PMID

17
Jackson M, Krassowska A, Gilbert N, Chevassut T, Forrester L, Ansell J, Ramsahoye B (2004). Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol, 24(20): 8862–8871

DOI PMID

18
Jaenisch R, Bird A (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 33(3s Suppl): 245–254

DOI PMID

19
Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074–1080

DOI PMID

20
Jones P A (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 13(7): 484–492

DOI PMID

21
Koh K P, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer C A, Mostoslavsky G, Lahesmaa R, Orkin S H, Rodig S J, Daley G Q, Rao A (2011). Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 8(2): 200–213

DOI PMID

22
Krueger F, Andrews S R (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27(11): 1571–1572

DOI PMID

23
Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25

DOI PMID

24
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, the 1000 Genome Project Data Processing Subgroup (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16): 2078–2079

DOI PMID

25
Lister R, Ecker J R (2009). Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res, 19(6): 959–966

DOI PMID

26
Lister R, Mukamel E A, Nery J R, Urich M, Puddifoot C A, Johnson N D, Lucero J, Huang Y, Dwork A J, Schultz M D, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu J C, Rao A, Esteller M, He C, Haghighi F G, Sejnowski T J, Behrens M M, Ecker J R (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341(6146): 1237905

DOI PMID

27
Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo Q M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315–322

DOI PMID

28
Maniatis T, Reed R (2002). An extensive network of coupling among gene expression machines. Nature, 416(6880): 499–506

DOI PMID

29
Mann I K, Chatterjee R, Zhao J, He X, Weirauch M T, Hughes T R, Vinson C (2013). CG methylated microarrays identify a novel methylated sequence bound by the CEBPB|ATF4 heterodimer that is active in vivo. Genome Res, 23(6): 988–997

DOI PMID

30
Margueron R, Reinberg D (2011). The Polycomb complex PRC2 and its mark in life. Nature, 469(7330): 343–349

DOI PMID

31
Métivier R, Penot G, Hübner M R, Reid G, Brand H, Kos M, Gannon F (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 115(6): 751–763

DOI PMID

32
Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir G A, Stewart R, Thomson J A (2007). Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell, 1(3): 299–312

DOI PMID

33
Reik W (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447(7143): 425–432

DOI PMID

34
Rivera C M, Ren B (2013). Mapping human epigenomes. Cell, 155(1): 39–55

DOI PMID

35
Robinson J T, Thorvaldsdóttir H, Winckler W, Guttman M, Lander E S, Getz G, Mesirov J P (2011). Integrative genomics viewer. Nat Biotechnol, 29(1): 24–26

DOI PMID

36
Robinson M D, McCarthy D J, Smyth G K (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140

DOI PMID

37
Smith Z D, Meissner A (2013). DNA methylation: roles in mammalian development. Nat Rev Genet, 14(3): 204–220

DOI PMID

38
Stadler M B, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley E J, Gaidatzis D, Tiwari V K, Schübeler D (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480(7378): 490–495

PMID

39
Tahiliani M, Koh K P, Shen Y, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer L M, Liu D R, Aravind L, Rao A (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935

DOI PMID

40
Thorvaldsdóttir H, Robinson J T, Mesirov J P (2013). Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform, 14(2): 178–192

DOI PMID

41
Trapnell C, Pachter L, Salzberg S L (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105–1111

DOI PMID

42
Tsumura A, Hayakawa T, Kumaki Y, Takebayashi S, Sakaue M, Matsuoka C, Shimotohno K, Ishikawa F, Li E, Ueda H R, Nakayama J, Okano M (2006). Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells, 11(7): 805–814

DOI PMID

43
Turner B M (2007). Defining an epigenetic code. Nat Cell Biol, 9(1): 2–6

DOI PMID

44
Xie W, Barr C L, Kim A, Yue F, Lee A Y, Eubanks J, Dempster E L, Ren B (2012). Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell, 148(4): 816–831

DOI PMID

45
Xie W, Schultz M D, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker J W, Tian S, Hawkins R D, Leung D, Yang H, Wang T, Lee A Y, Swanson S A, Zhang J, Zhu Y, Kim A, Nery J R, Urich M A, Kuan S, Yen C A, Klugman S, Yu P, Suknuntha K, Propson N E, Chen H, Edsall L E, Wagner U, Li Y, Ye Z, Kulkarni A, Xuan Z, Chung W Y, Chi N C, Antosiewicz-Bourget J E, Slukvin I, Stewart R, Zhang M Q, Wang W, Thomson J A, Ecker J R, Ren B (2013). Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell, 153(5): 1134–1148

DOI PMID

46
Ziller M J, Gu H, Müller F, Donaghey J, Tsai L T, Kohlbacher O, De Jager P L, Rosen E D, Bennett D A, Bernstein B E, Gnirke A, Meissner A (2013). Charting a dynamic DNA methylation landscape of the human genome. Nature, 500(7463): 477–481

DOI PMID

Outlines

/