Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals
Received date: 05 May 2016
Accepted date: 21 Jun 2016
Published date: 30 Aug 2016
Copyright
BACKGROUND: Epigenomic reconfiguration, including changes in DNA methylation and histone modifications, is crucial for the differentiation of embryonic stem cells (ESCs) into somatic cells. However, the extent to which the epigenome is reconfigured and the interplay between components of the epigenome during cellular differentiation remain poorly defined.
METHODS: We systematically analyzed and compared DNA methylation, various histone modification, and transcriptome profiles in ESCs with those of two distinct types of somatic cells from human and mouse.
RESULTS: We found that global DNA methylation levels are lower in somatic cells compared to ESCs in both species. We also found that 80% of regions with histone modification occupancy differ between human ESCs and the two human somatic cell types. Approximately 70% of the reconfigurations in DNA methylation and histone modifications are locus- and cell type-specific. Intriguingly, the loss of DNA methylation is accompanied by the gain of different histone modifications in a locus- and cell type-specific manner. Further examination of transcriptional changes associated with epigenetic reconfiguration at promoter regions revealed an epigenetic switching for gene regulation—a transition from stable gene silencing mediated by DNA methylation in ESCs to flexible gene repression facilitated by repressive histone modifications in somatic cells.
CONCLUSIONS: Our findings demonstrate that the epigenome is reconfigured in a locus- and cell type-specific manner and epigenetic switching is common during cellular differentiation in both human and mouse.
Ying-Tao Zhao , Maria Fasolino , Zhaolan Zhou . Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals[J]. Frontiers in Biology, 2016 , 11(4) : 311 -322 . DOI: 10.1007/s11515-016-1411-5
1 |
Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen H F, John R M, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher A G (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 8(5): 532–538
|
2 |
Ball M P, Li J B, Gao Y, Lee J H, LeProust E M, Park I H, Xie B, Daley G Q, Church G M (2009). Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol, 27(4): 361–368
|
3 |
Ben-Shushan E, Pikarsky E, Klar A, Bergman Y (1993). Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region. Mol Cell Biol, 13(2): 891–901
|
4 |
Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate- a practical and powerful approach to multiple testing. J Roy Stat Soc B Met, 57: 289–300
|
5 |
Berger S L (2007). The complex language of chromatin regulation during transcription. Nature, 447(7143): 407–412
|
6 |
Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber S L, Lander E S (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2): 315–326
|
7 |
Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21
|
8 |
Deb-Rinker P, Ly D, Jezierski A, Sikorska M, Walker P R (2005). Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J Biol Chem, 280(8): 6257–6260
|
9 |
Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T R (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1): 15–21
|
10 |
Gifford C A, Ziller M J, Gu H, Trapnell C, Donaghey J, Tsankov A, Shalek A K, Kelley D R, Shishkin A A, Issner R, Zhang X, Coyne M, Fostel J L, Holmes L, Meldrim J, Guttman M, Epstein C, Park H, Kohlbacher O, Rinn J, Gnirke A, Lander E S, Bernstein B E, Meissner A (2013). Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell, 153(5): 1149–1163
|
11 |
Hawkins R D, Hon G C, Lee L K, Ngo Q, Lister R, Pelizzola M, Edsall L E, Kuan S, Luu Y, Klugman S, Antosiewicz-Bourget J, Ye Z, Espinoza C, Agarwahl S, Shen L, Ruotti V, Wang W, Stewart R, Thomson J A, Ecker J R, Ren B (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell, 6(5): 479–491
|
12 |
Heinz S, Benner C, Spann N, Bertolino E, Lin Y C, Laslo P, Cheng J X, Murre C, Singh H, Glass C K (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell, 38(4): 576–589
|
13 |
Hon G C, Hawkins R D, Caballero O L, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall L E, Camargo A A, Stevenson B J, Ecker J R, Bafna V, Strausberg R L, Simpson A J, Ren B (2012). Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res, 22(2): 246–258
|
14 |
Hon G C, Rajagopal N, Shen Y, McCleary D F, Yue F, Dang M D, Ren B (2013). Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet, 45(10): 1198–1206
|
15 |
Huang W, Sherman B T, Lempicki R A (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37(1): 1–13
|
16 |
Huang W, Sherman B T, Lempicki R A (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1): 44–57
|
17 |
Jackson M, Krassowska A, Gilbert N, Chevassut T, Forrester L, Ansell J, Ramsahoye B (2004). Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol, 24(20): 8862–8871
|
18 |
Jaenisch R, Bird A (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 33(3s Suppl): 245–254
|
19 |
Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074–1080
|
20 |
Jones P A (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 13(7): 484–492
|
21 |
Koh K P, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer C A, Mostoslavsky G, Lahesmaa R, Orkin S H, Rodig S J, Daley G Q, Rao A (2011). Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 8(2): 200–213
|
22 |
Krueger F, Andrews S R (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27(11): 1571–1572
|
23 |
Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25
|
24 |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, the 1000 Genome Project Data Processing Subgroup (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16): 2078–2079
|
25 |
Lister R, Ecker J R (2009). Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res, 19(6): 959–966
|
26 |
Lister R, Mukamel E A, Nery J R, Urich M, Puddifoot C A, Johnson N D, Lucero J, Huang Y, Dwork A J, Schultz M D, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu J C, Rao A, Esteller M, He C, Haghighi F G, Sejnowski T J, Behrens M M, Ecker J R (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341(6146): 1237905
|
27 |
Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo Q M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315–322
|
28 |
Maniatis T, Reed R (2002). An extensive network of coupling among gene expression machines. Nature, 416(6880): 499–506
|
29 |
Mann I K, Chatterjee R, Zhao J, He X, Weirauch M T, Hughes T R, Vinson C (2013). CG methylated microarrays identify a novel methylated sequence bound by the CEBPB|ATF4 heterodimer that is active in vivo. Genome Res, 23(6): 988–997
|
30 |
Margueron R, Reinberg D (2011). The Polycomb complex PRC2 and its mark in life. Nature, 469(7330): 343–349
|
31 |
Métivier R, Penot G, Hübner M R, Reid G, Brand H, Kos M, Gannon F (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 115(6): 751–763
|
32 |
Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir G A, Stewart R, Thomson J A (2007). Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell, 1(3): 299–312
|
33 |
Reik W (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447(7143): 425–432
|
34 |
Rivera C M, Ren B (2013). Mapping human epigenomes. Cell, 155(1): 39–55
|
35 |
Robinson J T, Thorvaldsdóttir H, Winckler W, Guttman M, Lander E S, Getz G, Mesirov J P (2011). Integrative genomics viewer. Nat Biotechnol, 29(1): 24–26
|
36 |
Robinson M D, McCarthy D J, Smyth G K (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140
|
37 |
Smith Z D, Meissner A (2013). DNA methylation: roles in mammalian development. Nat Rev Genet, 14(3): 204–220
|
38 |
Stadler M B, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley E J, Gaidatzis D, Tiwari V K, Schübeler D (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480(7378): 490–495
|
39 |
Tahiliani M, Koh K P, Shen Y, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer L M, Liu D R, Aravind L, Rao A (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935
|
40 |
Thorvaldsdóttir H, Robinson J T, Mesirov J P (2013). Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform, 14(2): 178–192
|
41 |
Trapnell C, Pachter L, Salzberg S L (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105–1111
|
42 |
Tsumura A, Hayakawa T, Kumaki Y, Takebayashi S, Sakaue M, Matsuoka C, Shimotohno K, Ishikawa F, Li E, Ueda H R, Nakayama J, Okano M (2006). Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells, 11(7): 805–814
|
43 |
Turner B M (2007). Defining an epigenetic code. Nat Cell Biol, 9(1): 2–6
|
44 |
Xie W, Barr C L, Kim A, Yue F, Lee A Y, Eubanks J, Dempster E L, Ren B (2012). Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell, 148(4): 816–831
|
45 |
Xie W, Schultz M D, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker J W, Tian S, Hawkins R D, Leung D, Yang H, Wang T, Lee A Y, Swanson S A, Zhang J, Zhu Y, Kim A, Nery J R, Urich M A, Kuan S, Yen C A, Klugman S, Yu P, Suknuntha K, Propson N E, Chen H, Edsall L E, Wagner U, Li Y, Ye Z, Kulkarni A, Xuan Z, Chung W Y, Chi N C, Antosiewicz-Bourget J E, Slukvin I, Stewart R, Zhang M Q, Wang W, Thomson J A, Ecker J R, Ren B (2013). Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell, 153(5): 1134–1148
|
46 |
Ziller M J, Gu H, Müller F, Donaghey J, Tsai L T, Kohlbacher O, De Jager P L, Rosen E D, Bennett D A, Bernstein B E, Gnirke A, Meissner A (2013). Charting a dynamic DNA methylation landscape of the human genome. Nature, 500(7463): 477–481
|
/
〈 | 〉 |