Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals
Ying-Tao Zhao, Maria Fasolino, Zhaolan Zhou
Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals
BACKGROUND: Epigenomic reconfiguration, including changes in DNA methylation and histone modifications, is crucial for the differentiation of embryonic stem cells (ESCs) into somatic cells. However, the extent to which the epigenome is reconfigured and the interplay between components of the epigenome during cellular differentiation remain poorly defined.
METHODS: We systematically analyzed and compared DNA methylation, various histone modification, and transcriptome profiles in ESCs with those of two distinct types of somatic cells from human and mouse.
RESULTS: We found that global DNA methylation levels are lower in somatic cells compared to ESCs in both species. We also found that 80% of regions with histone modification occupancy differ between human ESCs and the two human somatic cell types. Approximately 70% of the reconfigurations in DNA methylation and histone modifications are locus- and cell type-specific. Intriguingly, the loss of DNA methylation is accompanied by the gain of different histone modifications in a locus- and cell type-specific manner. Further examination of transcriptional changes associated with epigenetic reconfiguration at promoter regions revealed an epigenetic switching for gene regulation—a transition from stable gene silencing mediated by DNA methylation in ESCs to flexible gene repression facilitated by repressive histone modifications in somatic cells.
CONCLUSIONS: Our findings demonstrate that the epigenome is reconfigured in a locus- and cell type-specific manner and epigenetic switching is common during cellular differentiation in both human and mouse.
DNA methylation / histone modifications / epigenome / epigenetic switch / cellular differentiation
[1] |
Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen H F, John R M, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher A G (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 8(5): 532–538
CrossRef
Pubmed
Google scholar
|
[2] |
Ball M P, Li J B, Gao Y, Lee J H, LeProust E M, Park I H, Xie B, Daley G Q, Church G M (2009). Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol, 27(4): 361–368
CrossRef
Pubmed
Google scholar
|
[3] |
Ben-Shushan E, Pikarsky E, Klar A, Bergman Y (1993). Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region. Mol Cell Biol, 13(2): 891–901
CrossRef
Pubmed
Google scholar
|
[4] |
Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate- a practical and powerful approach to multiple testing. J Roy Stat Soc B Met, 57: 289–300
|
[5] |
Berger S L (2007). The complex language of chromatin regulation during transcription. Nature, 447(7143): 407–412
CrossRef
Pubmed
Google scholar
|
[6] |
Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber S L, Lander E S (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2): 315–326
CrossRef
Pubmed
Google scholar
|
[7] |
Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21
CrossRef
Pubmed
Google scholar
|
[8] |
Deb-Rinker P, Ly D, Jezierski A, Sikorska M, Walker P R (2005). Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J Biol Chem, 280(8): 6257–6260
CrossRef
Pubmed
Google scholar
|
[9] |
Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T R (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1): 15–21
CrossRef
Pubmed
Google scholar
|
[10] |
Gifford C A, Ziller M J, Gu H, Trapnell C, Donaghey J, Tsankov A, Shalek A K, Kelley D R, Shishkin A A, Issner R, Zhang X, Coyne M, Fostel J L, Holmes L, Meldrim J, Guttman M, Epstein C, Park H, Kohlbacher O, Rinn J, Gnirke A, Lander E S, Bernstein B E, Meissner A (2013). Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell, 153(5): 1149–1163
CrossRef
Pubmed
Google scholar
|
[11] |
Hawkins R D, Hon G C, Lee L K, Ngo Q, Lister R, Pelizzola M, Edsall L E, Kuan S, Luu Y, Klugman S, Antosiewicz-Bourget J, Ye Z, Espinoza C, Agarwahl S, Shen L, Ruotti V, Wang W, Stewart R, Thomson J A, Ecker J R, Ren B (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell, 6(5): 479–491
CrossRef
Pubmed
Google scholar
|
[12] |
Heinz S, Benner C, Spann N, Bertolino E, Lin Y C, Laslo P, Cheng J X, Murre C, Singh H, Glass C K (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell, 38(4): 576–589
CrossRef
Pubmed
Google scholar
|
[13] |
Hon G C, Hawkins R D, Caballero O L, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall L E, Camargo A A, Stevenson B J, Ecker J R, Bafna V, Strausberg R L, Simpson A J, Ren B (2012). Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res, 22(2): 246–258
CrossRef
Pubmed
Google scholar
|
[14] |
Hon G C, Rajagopal N, Shen Y, McCleary D F, Yue F, Dang M D, Ren B (2013). Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet, 45(10): 1198–1206
CrossRef
Pubmed
Google scholar
|
[15] |
Huang W, Sherman B T, Lempicki R A (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37(1): 1–13
CrossRef
Pubmed
Google scholar
|
[16] |
Huang W, Sherman B T, Lempicki R A (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1): 44–57
CrossRef
Pubmed
Google scholar
|
[17] |
Jackson M, Krassowska A, Gilbert N, Chevassut T, Forrester L, Ansell J, Ramsahoye B (2004). Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol, 24(20): 8862–8871
CrossRef
Pubmed
Google scholar
|
[18] |
Jaenisch R, Bird A (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 33(3s Suppl): 245–254
CrossRef
Pubmed
Google scholar
|
[19] |
Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074–1080
CrossRef
Pubmed
Google scholar
|
[20] |
Jones P A (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 13(7): 484–492
CrossRef
Pubmed
Google scholar
|
[21] |
Koh K P, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer C A, Mostoslavsky G, Lahesmaa R, Orkin S H, Rodig S J, Daley G Q, Rao A (2011). Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 8(2): 200–213
CrossRef
Pubmed
Google scholar
|
[22] |
Krueger F, Andrews S R (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27(11): 1571–1572
CrossRef
Pubmed
Google scholar
|
[23] |
Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25
CrossRef
Pubmed
Google scholar
|
[24] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, the 1000 Genome Project Data Processing Subgroup (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16): 2078–2079
CrossRef
Pubmed
Google scholar
|
[25] |
Lister R, Ecker J R (2009). Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res, 19(6): 959–966
CrossRef
Pubmed
Google scholar
|
[26] |
Lister R, Mukamel E A, Nery J R, Urich M, Puddifoot C A, Johnson N D, Lucero J, Huang Y, Dwork A J, Schultz M D, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu J C, Rao A, Esteller M, He C, Haghighi F G, Sejnowski T J, Behrens M M, Ecker J R (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341(6146): 1237905
CrossRef
Pubmed
Google scholar
|
[27] |
Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo Q M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315–322
CrossRef
Pubmed
Google scholar
|
[28] |
Maniatis T, Reed R (2002). An extensive network of coupling among gene expression machines. Nature, 416(6880): 499–506
CrossRef
Pubmed
Google scholar
|
[29] |
Mann I K, Chatterjee R, Zhao J, He X, Weirauch M T, Hughes T R, Vinson C (2013). CG methylated microarrays identify a novel methylated sequence bound by the CEBPB|ATF4 heterodimer that is active in vivo. Genome Res, 23(6): 988–997
CrossRef
Pubmed
Google scholar
|
[30] |
Margueron R, Reinberg D (2011). The Polycomb complex PRC2 and its mark in life. Nature, 469(7330): 343–349
CrossRef
Pubmed
Google scholar
|
[31] |
Métivier R, Penot G, Hübner M R, Reid G, Brand H, Kos M, Gannon F (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 115(6): 751–763
CrossRef
Pubmed
Google scholar
|
[32] |
Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir G A, Stewart R, Thomson J A (2007). Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell, 1(3): 299–312
CrossRef
Pubmed
Google scholar
|
[33] |
Reik W (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447(7143): 425–432
CrossRef
Pubmed
Google scholar
|
[34] |
Rivera C M, Ren B (2013). Mapping human epigenomes. Cell, 155(1): 39–55
CrossRef
Pubmed
Google scholar
|
[35] |
Robinson J T, Thorvaldsdóttir H, Winckler W, Guttman M, Lander E S, Getz G, Mesirov J P (2011). Integrative genomics viewer. Nat Biotechnol, 29(1): 24–26
CrossRef
Pubmed
Google scholar
|
[36] |
Robinson M D, McCarthy D J, Smyth G K (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140
CrossRef
Pubmed
Google scholar
|
[37] |
Smith Z D, Meissner A (2013). DNA methylation: roles in mammalian development. Nat Rev Genet, 14(3): 204–220
CrossRef
Pubmed
Google scholar
|
[38] |
Stadler M B, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley E J, Gaidatzis D, Tiwari V K, Schübeler D (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480(7378): 490–495
Pubmed
|
[39] |
Tahiliani M, Koh K P, Shen Y, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer L M, Liu D R, Aravind L, Rao A (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935
CrossRef
Pubmed
Google scholar
|
[40] |
Thorvaldsdóttir H, Robinson J T, Mesirov J P (2013). Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform, 14(2): 178–192
CrossRef
Pubmed
Google scholar
|
[41] |
Trapnell C, Pachter L, Salzberg S L (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105–1111
CrossRef
Pubmed
Google scholar
|
[42] |
Tsumura A, Hayakawa T, Kumaki Y, Takebayashi S, Sakaue M, Matsuoka C, Shimotohno K, Ishikawa F, Li E, Ueda H R, Nakayama J, Okano M (2006). Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells, 11(7): 805–814
CrossRef
Pubmed
Google scholar
|
[43] |
Turner B M (2007). Defining an epigenetic code. Nat Cell Biol, 9(1): 2–6
CrossRef
Pubmed
Google scholar
|
[44] |
Xie W, Barr C L, Kim A, Yue F, Lee A Y, Eubanks J, Dempster E L, Ren B (2012). Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell, 148(4): 816–831
CrossRef
Pubmed
Google scholar
|
[45] |
Xie W, Schultz M D, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker J W, Tian S, Hawkins R D, Leung D, Yang H, Wang T, Lee A Y, Swanson S A, Zhang J, Zhu Y, Kim A, Nery J R, Urich M A, Kuan S, Yen C A, Klugman S, Yu P, Suknuntha K, Propson N E, Chen H, Edsall L E, Wagner U, Li Y, Ye Z, Kulkarni A, Xuan Z, Chung W Y, Chi N C, Antosiewicz-Bourget J E, Slukvin I, Stewart R, Zhang M Q, Wang W, Thomson J A, Ecker J R, Ren B (2013). Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell, 153(5): 1134–1148
CrossRef
Pubmed
Google scholar
|
[46] |
Ziller M J, Gu H, Müller F, Donaghey J, Tsai L T, Kohlbacher O, De Jager P L, Rosen E D, Bennett D A, Bernstein B E, Gnirke A, Meissner A (2013). Charting a dynamic DNA methylation landscape of the human genome. Nature, 500(7463): 477–481
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |