REVIEW

Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?

  • Richard König 1,2 ,
  • Bruno Benedetti 3 ,
  • Peter Rotheneichner 1,4 ,
  • Anna O′ Sullivan 1,4,5 ,
  • Christina Kreutzer 1,4 ,
  • Maria Belles 6 ,
  • Juan Nacher 6 ,
  • Thomas M. Weiger 7 ,
  • Ludwig Aigner , 1,2 ,
  • Sébastien Couillard-Després , 1,4
Expand
  • 1. Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
  • 2. Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
  • 3. Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck, Austria
  • 4. Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
  • 5. Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria
  • 6. Neurobiology Unit, Interdisciplinary Research Structure for Biotechnology and Biomedicine Valencia, Universitat de Valencia, Comunitat Valenciana, Spain
  • 7. Division of Cellular and Molecular Neurobiology, Department of Cell Biology, University of Salzburg, Salzburg, Austria

Received date: 30 Jan 2016

Accepted date: 09 May 2016

Published date: 05 Jul 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The expression of early developmental markers such as doublecortin (DCX) and the polysialylated-neural cell adhesion molecule (PSA-NCAM) has been used to identify immature neurons within canonical neurogenic niches. Additionally, DCX/PSA-NCAM+ immature neurons reside in cortical layer II of the paleocortex and in the paleo- and entorhinal cortex of mice and rats, respectively. These cells are also found in the neocortex of guinea pigs, rabbits, some afrotherian mammals, cats, dogs, non-human primates, and humans. The population of cortical DCX/PSA-NCAM+ immature neurons is generated prenatally as conclusively demonstrated in mice, rats, and guinea pigs. Thus, the majority of these cells do not appear to be the product of adult proliferative events. The immature neurons in cortical layer II are most abundant in the cortices of young individuals, while very few DCX/PSA-NCAM+ cortical neurons can be detected in aged mammals. Maturation of DCX/PSA-NCAM+ cells into glutamatergic and GABAergic neurons has been proposed as an explanation for the age-dependent reduction in their population over time. In this review, we compile the recent information regarding the age-related decrease in the number of cortical DCX/PSA-NCAM+ neurons. We compare the distribution and fates of DCX/PSA-NCAM+ neurons among mammalian species and speculate their impact on cognitive function. To respond to the diversity of adult neurogenesis research produced over the last number of decades, we close this review by discussing the use and precision of the term “adult non-canonical neurogenesis.”

Cite this article

Richard König , Bruno Benedetti , Peter Rotheneichner , Anna O′ Sullivan , Christina Kreutzer , Maria Belles , Juan Nacher , Thomas M. Weiger , Ludwig Aigner , Sébastien Couillard-Després . Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?[J]. Frontiers in Biology, 2016 , 11(3) : 193 -213 . DOI: 10.1007/s11515-016-1403-5

Acknowledgments

We would like to acknowledge Mr. Mark O′ Sullivan for his intellectual and literary input on this paper and Mag. Roman Fuchs for the images provided.

Compliance with ethics guidelines

Richard König, Bruno Benedetti, Peter Rotheneichner, Anna O’Sullivan, Christina Kreutzer, Maria Belles, Juan Nacher, M. Thomas Weiger, Ludwig Aigner, and Sébastien Couillard-Després declare that they have no conflicts of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.
1
Abrous D N, Montaron M F, Petry K G, Rougon G, Darnaudéry M, Le Moal M, Mayo W (1997). Decrease in highly polysialylated neuronal cell adhesion molecules and in spatial learning during ageing are not correlated. Brain Res, 744(2): 285–292

DOI PMID

2
Ambrogini P, Cuppini R, Cuppini C, Ciaroni S, Cecchini T, Ferri P, Sartini S, Del Grande P (2000). Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci Lett, 286(1): 21–24

DOI PMID

3
Bédard A, Lévesque M, Bernier P J, Parent A (2002). The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur J Neurosci, 16(10): 1917–1924

DOI PMID

4
Bekkers J M, Suzuki N (2013). Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci, 36(7): 429–438

DOI PMID

5
Bernier P J, Bedard A, Vinet J, Levesque M, Parent A (2002). Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA, 99(17): 11464–11469

DOI PMID

6
Betarbet R, Zigova T, Bakay R A, Luskin M B (1996). Dopaminergic and GABAergic interneurons of the olfactory bulb are derived from the neonatal subventricular zone. Int J Dev Neurosci, 14(7-8): 921–930

DOI PMID

7
Biebl M, Cooper C M, Winkler J, Kuhn H G (2000). Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett, 291(1): 17–20

DOI PMID

8
Bizon J L, Gallagher M (2005). More is less: neurogenesis and age-related cognitive decline in Long-Evans rats. Sci SAGE KE, 2005(7): re2

DOI PMID

9
Bizon J L, Lee H J, Gallagher M (2004). Neurogenesis in a rat model of age-related cognitive decline. Aging Cell, 3(4): 227–234

DOI PMID

10
Bloch J, Kaeser M, Sadeghi Y, Rouiller E M, Redmond D EJr, Brunet J F (2011). Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol, 519(4): 775–789

DOI PMID

11
Bondolfi L, Ermini F, Long J M, Ingram D K, Jucker M (2004). Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging, 25(3): 333–340

DOI PMID

12
Bonfanti L (2013).The (real) neurogenic/gliogenic potential of the postnatal and adult brain parenchyma. ISRN Neurosci, 2013: 354136

DOI PMID

13
Bonfanti L, Nacher J (2012). New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol, 98(1): 1–15

DOI PMID

14
Bonfanti L, Olive S, Poulain D A, Theodosis D T (1992). Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience, 49(2): 419–436

DOI PMID

15
Bonfanti L, Peretto P (2011). Adult neurogenesis in mammals—a theme with many variations. Eur J Neurosci, 34(6): 930–950

DOI PMID

16
Breunig J J, Arellano J I, Macklis J D, Rakic P (2007). Everything that glitters isn’t gold: a critical review of postnatal neural precursor analyses. Cell Stem Cell, 1(6): 612–627

DOI PMID

17
Brown J, Cooper-Kuhn C M, Kempermann G, Van Praag H, Winkler J, Gage F H, Kuhn H G (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci, 17(10): 2042–2046

DOI PMID

18
Burns K A, Ayoub A E, Breunig J J, Adhami F, Weng W L, Colbert M C, Rakic P, Kuan C Y (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cereb Cortex, 17(11): 2585–2592

DOI PMID

19
Burns T C, Ortiz-González X R, Gutiérrez-Pérez M, Keene C D, Sharda R, Demorest Z L, Jiang Y, Nelson-Holte M, Soriano M, Nakagawa Y, Luquin M R, Garcia-Verdugo J M, Prósper F, Low W C, Verfaillie C M (2006). Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution. Stem Cells, 24(4): 1121–1127

DOI PMID

20
Butt A M, Hamilton N, Hubbard P, Pugh M, Ibrahim M (2005). Synantocytes: the fifth element. J Anat, 207(6): 695–706

DOI PMID

21
Cai Y, Xiong K, Chu Y, Luo D W, Luo X G, Yuan X Y, Struble R G, Clough R W, Spencer D D, Williamson A, Kordower J H, Patrylo P R, Yan X X (2009). Doublecortin expression in adult cat and primate cerebral cortex relates to immature neurons that develop into GABAergic subgroups. Exp Neurol, 216(2): 342–356

DOI PMID

22
Cameron H A, McKay R D (1999). Restoring production of hippocampal neurons in old age. Nat Neurosci, 2(10): 894–897

DOI PMID

23
Carleton A, Petreanu L T, Lansford R, Alvarez-Buylla A, Lledo P M (2003).Becoming a new neuron in the adult olfactory bulb. Nat Neurosci, 6(5): 507–518

PMID

24
Clarke L E, Young K M, Hamilton N B, Li H, Richardson W D, Attwell D (2012). Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J Neurosci, 32(24): 8173–8185

DOI PMID

25
Costa M R, Kessaris N, Richardson W D, Götz M, Hedin-Pereira C (2007). The marginal zone/layer I as a novel niche for neurogenesis and gliogenesis in developing cerebral cortex. J Neurosci, 27(42): 11376–11388

DOI PMID

26
Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L (2006). Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci, 24(6): 1535–1545

DOI PMID

27
Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn H G, Aigner L (2005). Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci, 21(1): 1–14

DOI PMID

28
Curtis M A, Eriksson P S, Faull R L (2007). Progenitor cells and adult neurogenesis in neurodegenerative diseases and injuries of the basal ganglia. Clin Exp Pharmacol Physiol, 34(5-6): 528–532

DOI PMID

29
Dawson M R, Polito A, Levine J M, Reynolds R (2003). NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci, 24(2): 476–488

DOI PMID

30
Dayer A G, Cleaver K M, Abouantoun T, Cameron H A (2005). New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol, 168(3): 415–427

DOI PMID

31
de la Rosa-Prieto C, Saiz-Sanchez D, Ubeda-Bañon I, Argandoña-Palacios L, Garcia-Muñozguren S, Martinez-Marcos A (2010). Neurogenesis in subclasses of vomeronasal sensory neurons in adult mice. Dev Neurobiol, 70(14): 961–970

DOI PMID

32
De Marchis S, Fasolo A, Puche A C (2004). Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol, 476(3): 290–300

DOI PMID

33
De Nevi E, Marco-Salazar P, Fondevila D, Blasco E, Pérez L, Pumarola M (2013). Immunohistochemical study of doublecortin and nucleostemin in canine brain. Eur J Histochem, 57(1): e9

DOI PMID

34
des Portes V, Pinard J M, Billuart P, Vinet M C, Koulakoff A, Carrié A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly J (1998). A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell, 92(1): 51–61

DOI PMID

35
Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008). Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci, 28(41): 10434–10442

DOI PMID

36
Dirian L, Galant S, Coolen M, Chen W, Bedu S, Houart C, Bally-Cuif L, Foucher I (2014).Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells. Dev Cell, 30(2): 123–136

DOI PMID

37
Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004). Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci, 24(42): 9372–9382

DOI PMID

38
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997).Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061

PMID

39
Duque A, Rakic P (2011). Different effects of bromodeoxyuridine and [3H]thymidine incorporation into DNA on cell proliferation, position, and fate. J Neurosci, 31(42): 15205–15217

DOI PMID

40
Ehninger D, Kempermann G (2008). Neurogenesis in the adult hippocampus. Cell Tissue Res, 331(1): 243–250

DOI PMID

41
Ehninger D, Wang L P, Klempin F, Römer B, Kettenmann H, Kempermann G (2011). Enriched environment and physical activity reduce microglia and influence the fate of NG2 cells in the amygdala of adult mice. Cell Tissue Res, 345(1): 69–86

DOI PMID

42
Ekstrand J J, Domroese M E, Feig S L, Illig K R, Haberly L B (2001). Immunocytochemical analysis of basket cells in rat piriform cortex. J Comp Neurol, 434(3): 308–328

DOI PMID

43
Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579

DOI PMID

44
Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247–251

DOI PMID

45
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998).Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317

DOI PMID

46
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J (2014). Neurogenesis in the striatum of the adult human brain. Cell, 156(5): 1072–1083

DOI PMID

47
Feliciano D M, Bordey A (2013). Newborn cortical neurons: only for neonates? Trends Neurosci, 36(1): 51–61

DOI PMID

48
Feliciano D M, Bordey A, Bonfanti L (2015). Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain. Cold Spring Harb Perspect Biol, 7(10): a018846

DOI PMID

49
Fox G B, Fichera G, Barry T, O’Connell A W, Gallagher H C, Murphy K J, Regan C M (2000). Consolidation of passive avoidance learning is associated with transient increases of polysialylated neurons in layer II of the rat medial temporal cortex. J Neurobiol, 45(3): 135–141

DOI PMID

50
Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet M C, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell S K, Berwald-Netter Y, Denoulet P, Chelly J (1999). Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron, 23(2): 247–256

DOI PMID

51
Friocourt G, Liu J S, Antypa M, Rakic S, Walsh C A, Parnavelas J G (2007). Both doublecortin and doublecortin-like kinase play a role in cortical interneuron migration. J Neurosci, 27(14): 3875–3883

DOI PMID

52
Gage F H, Kempermann G, Song H (2008). Adult Neurogenesis, Vol 52. Cold Spring Harbor Laboratory Press

53
Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593

DOI PMID

54
Gómez-Climent M A, Castillo-Gómez E, Varea E, Guirado R, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nácher J (2008). A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex, 18(10): 2229–2240

DOI PMID

55
Gomez-Climent M A, Guirado R, Varea E, Nàcher J (2010). “Arrested development”. Immature, but not recently generated, neurons in the adult brain. Arch Ital Biol, 148(2): 159–172

PMID

56
Gottfried J A, Winston J S, Dolan R J (2006). Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron, 49(3): 467–479

DOI PMID

57
Gould E (2007).How widespread is adult neurogenesis in mammals? Nat Rev Neurosci, 8(6): 481–488

DOI PMID

58
Gould E, Tanapat P, Hastings N B, Shors T J (1999). Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci, 3(5): 186–192

DOI PMID

59
Gritti A, Vescovi A L, Galli R (2002). Adult neural stem cells: plasticity and developmental potential. J Physiol Paris, 96(1-2): 81–90

DOI PMID

60
Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D (2010). Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J Neurosci, 30(36): 12036–12049

DOI PMID

61
Hastings N B, Gould E (1999). Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol, 413(1): 146–154

DOI PMID

62
He X, Zhang X M, Wu J, Fu J, Mou L, Lu D H, Cai Y, Luo X G, Pan A, Yan X X (2014). Olfactory experience modulates immature neuron development in postnatal and adult guinea pig piriform cortex. Neuroscience, 259: 101–112

DOI PMID

63
Hevner R F, Hodge R D, Daza R A, Englund C (2006). Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res, 55(3): 223–233

DOI PMID

64
Johnson C P, Fujimoto I, Rutishauser U, Leckband D E (2005). Direct evidence that neural cell adhesion molecule (NCAM) polysialylation increases intermembrane repulsion and abrogates adhesion. J Biol Chem, 280(1): 137–145

DOI PMID

65
Kadohisa M, Wilson D A (2006a). Olfactory cortical adaptation facilitates detection of odors against background. J Neurophysiol, 95(3): 1888–1896

DOI PMID

66
Kadohisa M, Wilson D A (2006b). Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proc Natl Acad Sci USA, 103(41): 15206–15211

DOI PMID

67
Kang S H, Fukaya M, Yang J K, Rothstein J D, Bergles D E (2010). NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron, 68(4): 668–681

DOI PMID

68
Kaplan M S (1981). Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol, 195(2): 323–338

DOI PMID

69
Kapur A, Pearce R A, Lytton W W, Haberly L B (1997). GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells. J Neurophysiol, 78(5): 2531–2545

PMID

70
Kato T, Yokouchi K, Kawagishi K, Fukushima N, Miwa T, Moriizumi T, Kato T, Yokouchi K, Kawagishi K (2000). Fate of newly formed periglomerular cells in the olfactory bulb. Acta Otolaryngol, 120(7): 876–879

DOI PMID

71
Kelsch W, Mosley C P, Lin C W, Lois C (2007). Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns. PLoS Biol, 5(11): e300

DOI PMID

72
Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004). Milestones of neuronal development in the adult hippocampus. Trends Neurosci, 27(8): 447–452

DOI PMID

73
Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G (2011). Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS ONE, 6(10): e25760

DOI PMID

74
Komitova M, Zhu X, Serwanski D R, Nishiyama A (2009). NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol, 512(5): 702–716

DOI PMID

75
König R, Rotheneichner P, Marschallinger J, Aigner L, Couillard-Despres S (2016). Adult Neurogenesis in the Hippocampus. Elsevier, pp. 145–176

76
Kornack D R, Rakic P (2001). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294(5549): 2127–2130

DOI PMID

77
Kremer T, Jagasia R, Herrmann A, Matile H, Borroni E, Francis F, Kuhn H G, Czech C (2013). Analysis of adult neurogenesis: evidence for a prominent “non-neurogenic” DCX-protein pool in rodent brain. PLoS ONE, 8(5): e59269

DOI PMID

78
Kuan C Y, Schloemer A J, Lu A, Burns K A, Weng W L, Williams M T, Strauss K I, Vorhees C V, Flavell R A, Davis R J, Sharp F R, Rakic P (2004). Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci, 24(47): 10763–10772

DOI PMID

79
Kunz B A, Kohalmi S E (1991). Modulation of mutagenesis by deoxyribonucleotide levels. Annu Rev Genet, 25(1): 339–359

DOI PMID

80
Lehner B, Sandner B, Marschallinger J, Lehner C, Furtner T, Couillard-Despres S, Rivera F J, Brockhoff G, Bauer H C, Weidner N, Aigner L (2011). The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival. Cell Tissue Res, 345(3): 313–328

DOI PMID

81
Lemaire V, Koehl M, Le Moal M, Abrous D N (2000). Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA, 97(20): 11032–11037

DOI PMID

82
Luskin M B, Boone M S (1994). Rate and pattern of migration of lineally-related olfactory bulb interneurons generated postnatally in the subventricular zone of the rat. Chem Senses, 19(6): 695–714

DOI PMID

83
Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009). DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex, 19(5): 1028–1041

DOI PMID

84
Luzzati F, Nato G, Oboti L, Vigna E, Rolando C, Armentano M, Bonfanti L, Fasolo A, Peretto P (2014). Quiescent neuronal progenitors are activated in the juvenile guinea pig lateral striatum and give rise to transient neurons. Development, 141(21): 4065–4075

DOI PMID

85
Luzzati F, Peretto P, Aimar P, Ponti G, Fasolo A, Bonfanti L (2003). Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc Natl Acad Sci USA, 100(22): 13036–13041

DOI PMID

86
Manganas L N, Zhang X, Li Y, Hazel R D, Smith S D, Wagshul M E, Henn F, Benveniste H, Djuric P M, Enikolopov G, Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852): 980–985

DOI PMID

87
Markakis E A, Gage F H (1999). Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol, 406(4): 449–460

DOI PMID

88
Martí-Mengual U, Varea E, Crespo C, Blasco-Ibáñez J M, Nacher J (2013). Cells expressing markers of immature neurons in the amygdala of adult humans. Eur J Neurosci, 37(1): 10–22

DOI PMID

89
Mikkonen M, Soininen H, Kälviänen R, Tapiola T, Ylinen A, Vapalahti M, Paljärvi L, Pitkänen A (1998). Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol, 44(6): 923–934

DOI PMID

90
Murphy K J, Fox G B, Foley A G, Gallagher H C, O’Connell A, Griffin A M, Nau H, Regan C M (2001). Pentyl-4-yn-valproic acid enhances both spatial and avoidance learning, and attenuates age-related NCAM-mediated neuroplastic decline within the rat medial temporal lobe. J Neurochem, 78(4): 704–714

DOI PMID

91
Nacher J, Bonfanti L (2015). New neurons from old beliefs in the adult piriform cortex? A Commentary on: “Occurrence of new neurons in the piriform cortex”. Front Neuroanat, 9: 62

DOI PMID

92
Nacher J, Crespo C, McEwen B S (2001). Doublecortin expression in the adult rat telencephalon. Eur J Neurosci, 14(4): 629–644

DOI PMID

93
Nacher J, Lanuza E, McEwen B S (2002). Distribution of PSA-NCAM expression in the amygdala of the adult rat. Neuroscience, 113(3): 479–484

DOI PMID

94
Neville K R, Haberly L B (2003). Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. J Neurophysiol, 90(6): 3921–3930

DOI PMID

95
Ní Dhúill C M, Fox G B, Pittock S J, O’Connell A W, Murphy K J, Regan C M (1999). Polysialylated neural cell adhesion molecule expression in the dentate gyrus of the human hippocampal formation from infancy to old age. J Neurosci Res, 55(1): 99–106

DOI PMID

96
Nishiyama A, Komitova M, Suzuki R, Zhu X (2009). Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci, 10(1): 9–22

DOI PMID

97
Nishiyama A, Suzuki R, Zhu X (2014). NG2 cells (polydendrocytes) in brain physiology and repair. Front Neurosci, 8: 133

DOI PMID

98
Nowakowski R S, Hayes N L (2000). New neurons: extraordinary evidence or extraordinary conclusion? Science, 288(5467): 771

DOI PMID

99
Nowakowski R S, Lewin S B, Miller M W (1989). Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol, 18(3): 311–318

DOI PMID

100
Okuda H, Tatsumi K, Makinodan M, Yamauchi T, Kishimoto T, Wanaka A (2009). Environmental enrichment stimulates progenitor cell proliferation in the amygdala. J Neurosci Res, 87(16): 3546–3553

DOI PMID

101
Patzke N, LeRoy A, Ngubane N W, Bennett N C, Medger K, Gravett N, Kaswera-Kyamakya C, Gilissen E, Chawana R, Manger P R (2014). The distribution of doublecortin-immunopositive cells in the brains of four afrotherian mammals: the Hottentot golden mole (Amblysomus hottentotus), the rock hyrax (Procavia capensis), the eastern rock sengi (Elephantulus myurus) and the four-toed sengi (Petrodromus tetradactylus). Brain Behav Evol, 84(3): 227–241

DOI PMID

102
Peretto P, Bonfanti L (2014). Major unsolved points in adult neurogenesis: doors open on a translational future? Front Neurosci, 8: 154

DOI PMID

103
Petreanu L, Alvarez-Buylla A (2002). Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci, 22(14): 6106–6113

PMID

104
Pierce A A, Xu A W (2010). De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci, 30(2): 723–730

DOI PMID

105
Psachoulia K, Jamen F, Young K M, Richardson W D (2009). Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol, 5(3-4): 57–67

DOI PMID

106
Purves D, Augustine G J, Flitzpatrick D, Katz L C, LaMantia A S, McNamara J O, Williams S M (2001). Neuroscience, 2nd edition. Sunderland (MA): Sinauer Associates

107
Richardson W D, Young K M, Tripathi R B, McKenzie I (2011). NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron, 70(4): 661–673

DOI PMID

108
Rivers L E, Young K M, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson W D (2008). PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci, 11(12): 1392–1401

DOI PMID

109
Robins S C, Trudel E, Rotondi O, Liu X, Djogo T, Kryzskaya D, Bourque C W, Kokoeva M V (2013). Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS ONE, 8(10): e78236

DOI PMID

110
Rosselli-Austin L, Altman J (1979). The postnatal development of the main olfactory bulb of the rat. J Dev Physiol, 1(4): 295–313

PMID

111
Rossi S L, Mahairaki V, Zhou L, Song Y, Koliatsos V E (2014). Remodeling of the piriform cortex after lesion in adult rodents. Neuroreport, 25(13): 1006–1012

DOI PMID

112
Rubio A, Belles M, Belenguer G, Vidueira S, Fariñas I, Nacher J (2015). Characterization and isolation of immature neurons of the adult mouse piriform cortex. Dev Neurobiol, doi: 10.1002/dneu.22357

PMID

113
Rutishauser U (2008). Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci, 9(1): 26–35

DOI PMID

114
Saegusa T, Mine S, Iwasa H, Murai H, Seki T, Yamaura A, Yuasa S (2004). Involvement of highly polysialylated neural cell adhesion molecule (PSA-NCAM)-positive granule cells in the amygdaloid-kindling-induced sprouting of a hippocampal mossy fiber trajectory. Neurosci Res, 48(2): 185–194

DOI PMID

115
Sairanen M, O’Leary O F, Knuuttila J E, Castrén E (2007). Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience, 144(1): 368–374

DOI PMID

116
Sanai N, Nguyen T, Ihrie R A, Mirzadeh Z, Tsai H H, Wong M, Gupta N, Berger M S, Huang E, Garcia-Verdugo J M, Rowitch D H, Alvarez-Buylla A (2011). Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 478(7369): 382–386

DOI PMID

117
Seki T, Arai Y (1999). Temporal and spacial relationships between PSA-NCAM-expressing, newly generated granule cells, and radial glia-like cells in the adult dentate gyrus. J Comp Neurol, 410(3): 503–513

DOI PMID

118
Shapiro L A, Ng K, Zhou Q Y, Ribak C E (2009). Subventricular zone-derived, newly generated neurons populate several olfactory and limbic forebrain regions. Epilepsy Behav, 14(Suppl 1): 74–80

DOI PMID

119
Shapiro L A, Ng K L, Kinyamu R, Whitaker-Azmitia P, Geisert E E, Blurton-Jones M, Zhou Q Y, Ribak C E (2007a). Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex. Brain Struct Funct, 212(2): 133–148

DOI PMID

120
Shapiro L A, Ng K L, Zhou Q Y, Ribak C E (2007b). Olfactory enrichment enhances the survival of newly born cortical neurons in adult mice. Neuroreport, 18(10): 981–985

DOI PMID

121
Shechter R, Ziv Y, Schwartz M (2007). New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells, 25(9): 2277–2282

DOI PMID

122
Shors T J, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410(6826): 372–376

DOI PMID

123
Shors T J, Townsend D A, Zhao M, Kozorovitskiy Y, Gould E (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12(5): 578–584

DOI PMID

124
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227

DOI PMID

125
Suzuki N, Bekkers J M (2007). Inhibitory interneurons in the piriform cortex. Clin Exp Pharmacol Physiol, 34(10): 1064–1069

DOI PMID

126
Suzuki N, Bekkers J M (2010a). Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex. Cereb Cortex, 20(12): 2971–2984

DOI PMID

127
Suzuki N, Bekkers J M (2010b). Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol, 518(10): 1670–1687

DOI PMID

128
Takemura N U (2005). Evidence for neurogenesis within the white matter beneath the temporal neocortex of the adult rat brain. Neuroscience, 134(1): 121–132

DOI PMID

129
Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907

DOI PMID

130
Toni N, Teng E M, Bushong E A, Aimone J B, Zhao C, Consiglio A, van Praag H, Martone M E, Ellisman M H, Gage F H (2007). Synapse formation on neurons born in the adult hippocampus. Nat Neurosci, 10(6): 727–734

DOI PMID

131
van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030–1034

DOI PMID

132
Varea E, Belles M, Vidueira S, Blasco-Ibáñez J M, Crespo C, Pastor A M, Nacher J (2011). PSA-NCAM is Expressed in Immature, but not Recently Generated, Neurons in the Adult Cat Cerebral Cortex Layer II. Front Neurosci, 5: 17

DOI PMID

133
Varea E, Castillo-Gómez E, Gómez-Climent M A, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nàcher J (2007).PSA-NCAM expression in the human prefrontal cortex. J Chem Neuroanat, 33(4): 202–209

DOI PMID

134
Varea E, Castillo-Gómez E, Gómez-Climent M A, Guirado R, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nácher J (2009). Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiol Aging, 30(5): 808–818

DOI PMID

135
Vessal M, Aycock A, Garton M T, Ciferri M, Darian-Smith C (2007). Adult neurogenesis in primate and rodent spinal cord: comparing a cervical dorsal rhizotomy with a dorsal column transection. Eur J Neurosci, 26(10): 2777–2794

DOI PMID

136
Vivar C, van Praag H (2013). Functional circuits of new neurons in the dentate gyrus. Front Neural Circuits, 7: 15

DOI PMID

137
Winner B, Cooper-Kuhn C M, Aigner R, Winkler J, Kuhn H G (2002). Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci, 16(9): 1681–1689

DOI PMID

138
Xiong K, Cai Y, Zhang X M, Huang J F, Liu Z Y, Fu G M, Feng J C, Clough R W, Patrylo P R, Luo X G, Hu C H, Yan X X (2010). Layer I as a putative neurogenic niche in young adult guinea pig cerebrum. Mol Cell Neurosci, 45(2): 180–191

DOI PMID

139
Xiong K, Luo D W, Patrylo P R, Luo X G, Struble R G, Clough R W, Yan X X (2008). Doublecortin-expressing cells are present in layer II across the adult guinea pig cerebral cortex: partial colocalization with mature interneuron markers. Exp Neurol, 211(1): 271–282

DOI PMID

140
Yang Y, Geldmacher D S, Herrup K (2001). DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci, 21(8): 2661–2668

PMID

141
Yang Y, Xie M X, Li J M, Hu X, Patrylo P R, Luo X G, Cai Y, Li Z, Yan X X (2015). Prenatal genesis of layer II doublecortin expressing neurons in neonatal and young adult guinea pig cerebral cortex. Front Neuroanat, 9: 109

DOI PMID

142
Yuan T F, Liang Y X, So K F (2014). Occurrence of new neurons in the piriform cortex. Front Neuroanat, 8: 167

PMID

143
Yuan T F, Liang Y X, So K F (2015). Response: New neurons from old beliefs in the adult piriform cortex? A Commentary on: “Occurrence of new neurons in the piriform cortex”. Front Neuroanat, 9: 79

DOI PMID

144
Zhang J, Giesert F, Kloos K, Vogt Weisenhorn D M, Aigner L, Wurst W, Couillard-Despres S (2010). A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons. BMC Neurosci, 11(1): 158

DOI PMID

145
Zhang X M, Cai Y, Chu Y, Chen E Y, Feng J C, Luo X G, Xiong K, Struble R G, Clough R W, Patrylo P R, Kordower J H, Yan X X (2009). Doublecortin-expressing cells persist in the associative cerebral cortex and amygdala in aged nonhuman primates. Front Neuroanat, 3: 17

DOI PMID

146
Zhu X, Bergles D E, Nishiyama A (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development, 135(1): 145–157

DOI PMID

147
Zhu X, Hill R A, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011). Age-dependent fate and lineage restriction of single NG2 cells. Development, 138(4): 745–753

DOI PMID

148
Zigova T, Betarbet R, Soteres B J, Brock S, Bakay R A, Luskin M B (1996). A comparison of the patterns of migration and the destinations of homotopically transplanted neonatal subventricular zone cells and heterotopically transplanted telencephalic ventricular zone cells. Dev Biol, 173(2): 459–474

DOI PMID

Outlines

/