Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?

Richard König, Bruno Benedetti, Peter Rotheneichner, Anna O′ Sullivan, Christina Kreutzer, Maria Belles, Juan Nacher, Thomas M. Weiger, Ludwig Aigner, Sébastien Couillard-Després

PDF(1239 KB)
PDF(1239 KB)
Front. Biol. ›› 2016, Vol. 11 ›› Issue (3) : 193-213. DOI: 10.1007/s11515-016-1403-5
REVIEW
REVIEW

Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?

Author information +
History +

Abstract

The expression of early developmental markers such as doublecortin (DCX) and the polysialylated-neural cell adhesion molecule (PSA-NCAM) has been used to identify immature neurons within canonical neurogenic niches. Additionally, DCX/PSA-NCAM+ immature neurons reside in cortical layer II of the paleocortex and in the paleo- and entorhinal cortex of mice and rats, respectively. These cells are also found in the neocortex of guinea pigs, rabbits, some afrotherian mammals, cats, dogs, non-human primates, and humans. The population of cortical DCX/PSA-NCAM+ immature neurons is generated prenatally as conclusively demonstrated in mice, rats, and guinea pigs. Thus, the majority of these cells do not appear to be the product of adult proliferative events. The immature neurons in cortical layer II are most abundant in the cortices of young individuals, while very few DCX/PSA-NCAM+ cortical neurons can be detected in aged mammals. Maturation of DCX/PSA-NCAM+ cells into glutamatergic and GABAergic neurons has been proposed as an explanation for the age-dependent reduction in their population over time. In this review, we compile the recent information regarding the age-related decrease in the number of cortical DCX/PSA-NCAM+ neurons. We compare the distribution and fates of DCX/PSA-NCAM+ neurons among mammalian species and speculate their impact on cognitive function. To respond to the diversity of adult neurogenesis research produced over the last number of decades, we close this review by discussing the use and precision of the term “adult non-canonical neurogenesis.”

Keywords

aging / cognition / doublecortin / piriform cortex / plasticity / neurogenesis

Cite this article

Download citation ▾
Richard König, Bruno Benedetti, Peter Rotheneichner, Anna O′ Sullivan, Christina Kreutzer, Maria Belles, Juan Nacher, Thomas M. Weiger, Ludwig Aigner, Sébastien Couillard-Després. Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?. Front. Biol., 2016, 11(3): 193‒213 https://doi.org/10.1007/s11515-016-1403-5

References

[1]
Abrous D N, Montaron M F, Petry K G, Rougon G, Darnaudéry M, Le Moal M, Mayo W (1997). Decrease in highly polysialylated neuronal cell adhesion molecules and in spatial learning during ageing are not correlated. Brain Res, 744(2): 285–292
CrossRef Pubmed Google scholar
[2]
Ambrogini P, Cuppini R, Cuppini C, Ciaroni S, Cecchini T, Ferri P, Sartini S, Del Grande P (2000). Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci Lett, 286(1): 21–24
CrossRef Pubmed Google scholar
[3]
Bédard A, Lévesque M, Bernier P J, Parent A (2002). The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur J Neurosci, 16(10): 1917–1924
CrossRef Pubmed Google scholar
[4]
Bekkers J M, Suzuki N (2013). Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci, 36(7): 429–438
CrossRef Pubmed Google scholar
[5]
Bernier P J, Bedard A, Vinet J, Levesque M, Parent A (2002). Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA, 99(17): 11464–11469
CrossRef Pubmed Google scholar
[6]
Betarbet R, Zigova T, Bakay R A, Luskin M B (1996). Dopaminergic and GABAergic interneurons of the olfactory bulb are derived from the neonatal subventricular zone. Int J Dev Neurosci, 14(7-8): 921–930
CrossRef Pubmed Google scholar
[7]
Biebl M, Cooper C M, Winkler J, Kuhn H G (2000). Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett, 291(1): 17–20
CrossRef Pubmed Google scholar
[8]
Bizon J L, Gallagher M (2005). More is less: neurogenesis and age-related cognitive decline in Long-Evans rats. Sci SAGE KE, 2005(7): re2
CrossRef Pubmed Google scholar
[9]
Bizon J L, Lee H J, Gallagher M (2004). Neurogenesis in a rat model of age-related cognitive decline. Aging Cell, 3(4): 227–234
CrossRef Pubmed Google scholar
[10]
Bloch J, Kaeser M, Sadeghi Y, Rouiller E M, Redmond D EJr, Brunet J F (2011). Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol, 519(4): 775–789
CrossRef Pubmed Google scholar
[11]
Bondolfi L, Ermini F, Long J M, Ingram D K, Jucker M (2004). Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging, 25(3): 333–340
CrossRef Pubmed Google scholar
[12]
Bonfanti L (2013).The (real) neurogenic/gliogenic potential of the postnatal and adult brain parenchyma. ISRN Neurosci, 2013: 354136
CrossRef Pubmed Google scholar
[13]
Bonfanti L, Nacher J (2012). New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol, 98(1): 1–15
CrossRef Pubmed Google scholar
[14]
Bonfanti L, Olive S, Poulain D A, Theodosis D T (1992). Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience, 49(2): 419–436
CrossRef Pubmed Google scholar
[15]
Bonfanti L, Peretto P (2011). Adult neurogenesis in mammals—a theme with many variations. Eur J Neurosci, 34(6): 930–950
CrossRef Pubmed Google scholar
[16]
Breunig J J, Arellano J I, Macklis J D, Rakic P (2007). Everything that glitters isn’t gold: a critical review of postnatal neural precursor analyses. Cell Stem Cell, 1(6): 612–627
CrossRef Pubmed Google scholar
[17]
Brown J, Cooper-Kuhn C M, Kempermann G, Van Praag H, Winkler J, Gage F H, Kuhn H G (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci, 17(10): 2042–2046
CrossRef Pubmed Google scholar
[18]
Burns K A, Ayoub A E, Breunig J J, Adhami F, Weng W L, Colbert M C, Rakic P, Kuan C Y (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cereb Cortex, 17(11): 2585–2592
CrossRef Pubmed Google scholar
[19]
Burns T C, Ortiz-González X R, Gutiérrez-Pérez M, Keene C D, Sharda R, Demorest Z L, Jiang Y, Nelson-Holte M, Soriano M, Nakagawa Y, Luquin M R, Garcia-Verdugo J M, Prósper F, Low W C, Verfaillie C M (2006). Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution. Stem Cells, 24(4): 1121–1127
CrossRef Pubmed Google scholar
[20]
Butt A M, Hamilton N, Hubbard P, Pugh M, Ibrahim M (2005). Synantocytes: the fifth element. J Anat, 207(6): 695–706
CrossRef Pubmed Google scholar
[21]
Cai Y, Xiong K, Chu Y, Luo D W, Luo X G, Yuan X Y, Struble R G, Clough R W, Spencer D D, Williamson A, Kordower J H, Patrylo P R, Yan X X (2009). Doublecortin expression in adult cat and primate cerebral cortex relates to immature neurons that develop into GABAergic subgroups. Exp Neurol, 216(2): 342–356
CrossRef Pubmed Google scholar
[22]
Cameron H A, McKay R D (1999). Restoring production of hippocampal neurons in old age. Nat Neurosci, 2(10): 894–897
CrossRef Pubmed Google scholar
[23]
Carleton A, Petreanu L T, Lansford R, Alvarez-Buylla A, Lledo P M (2003).Becoming a new neuron in the adult olfactory bulb. Nat Neurosci, 6(5): 507–518
Pubmed
[24]
Clarke L E, Young K M, Hamilton N B, Li H, Richardson W D, Attwell D (2012). Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J Neurosci, 32(24): 8173–8185
CrossRef Pubmed Google scholar
[25]
Costa M R, Kessaris N, Richardson W D, Götz M, Hedin-Pereira C (2007). The marginal zone/layer I as a novel niche for neurogenesis and gliogenesis in developing cerebral cortex. J Neurosci, 27(42): 11376–11388
CrossRef Pubmed Google scholar
[26]
Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L (2006). Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci, 24(6): 1535–1545
CrossRef Pubmed Google scholar
[27]
Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn H G, Aigner L (2005). Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci, 21(1): 1–14
CrossRef Pubmed Google scholar
[28]
Curtis M A, Eriksson P S, Faull R L (2007). Progenitor cells and adult neurogenesis in neurodegenerative diseases and injuries of the basal ganglia. Clin Exp Pharmacol Physiol, 34(5-6): 528–532
CrossRef Pubmed Google scholar
[29]
Dawson M R, Polito A, Levine J M, Reynolds R (2003). NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci, 24(2): 476–488
CrossRef Pubmed Google scholar
[30]
Dayer A G, Cleaver K M, Abouantoun T, Cameron H A (2005). New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol, 168(3): 415–427
CrossRef Pubmed Google scholar
[31]
de la Rosa-Prieto C, Saiz-Sanchez D, Ubeda-Bañon I, Argandoña-Palacios L, Garcia-Muñozguren S, Martinez-Marcos A (2010). Neurogenesis in subclasses of vomeronasal sensory neurons in adult mice. Dev Neurobiol, 70(14): 961–970
CrossRef Pubmed Google scholar
[32]
De Marchis S, Fasolo A, Puche A C (2004). Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol, 476(3): 290–300
CrossRef Pubmed Google scholar
[33]
De Nevi E, Marco-Salazar P, Fondevila D, Blasco E, Pérez L, Pumarola M (2013). Immunohistochemical study of doublecortin and nucleostemin in canine brain. Eur J Histochem, 57(1): e9
CrossRef Pubmed Google scholar
[34]
des Portes V, Pinard J M, Billuart P, Vinet M C, Koulakoff A, Carrié A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly J (1998). A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell, 92(1): 51–61
CrossRef Pubmed Google scholar
[35]
Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008). Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci, 28(41): 10434–10442
CrossRef Pubmed Google scholar
[36]
Dirian L, Galant S, Coolen M, Chen W, Bedu S, Houart C, Bally-Cuif L, Foucher I (2014).Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells. Dev Cell, 30(2): 123–136
CrossRef Pubmed Google scholar
[37]
Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004). Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci, 24(42): 9372–9382
CrossRef Pubmed Google scholar
[38]
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997).Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061
Pubmed
[39]
Duque A, Rakic P (2011). Different effects of bromodeoxyuridine and [3H]thymidine incorporation into DNA on cell proliferation, position, and fate. J Neurosci, 31(42): 15205–15217
CrossRef Pubmed Google scholar
[40]
Ehninger D, Kempermann G (2008). Neurogenesis in the adult hippocampus. Cell Tissue Res, 331(1): 243–250
CrossRef Pubmed Google scholar
[41]
Ehninger D, Wang L P, Klempin F, Römer B, Kettenmann H, Kempermann G (2011). Enriched environment and physical activity reduce microglia and influence the fate of NG2 cells in the amygdala of adult mice. Cell Tissue Res, 345(1): 69–86
CrossRef Pubmed Google scholar
[42]
Ekstrand J J, Domroese M E, Feig S L, Illig K R, Haberly L B (2001). Immunocytochemical analysis of basket cells in rat piriform cortex. J Comp Neurol, 434(3): 308–328
CrossRef Pubmed Google scholar
[43]
Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579
CrossRef Pubmed Google scholar
[44]
Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247–251
CrossRef Pubmed Google scholar
[45]
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998).Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
CrossRef Pubmed Google scholar
[46]
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J (2014). Neurogenesis in the striatum of the adult human brain. Cell, 156(5): 1072–1083
CrossRef Pubmed Google scholar
[47]
Feliciano D M, Bordey A (2013). Newborn cortical neurons: only for neonates? Trends Neurosci, 36(1): 51–61
CrossRef Pubmed Google scholar
[48]
Feliciano D M, Bordey A, Bonfanti L (2015). Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain. Cold Spring Harb Perspect Biol, 7(10): a018846
CrossRef Pubmed Google scholar
[49]
Fox G B, Fichera G, Barry T, O’Connell A W, Gallagher H C, Murphy K J, Regan C M (2000). Consolidation of passive avoidance learning is associated with transient increases of polysialylated neurons in layer II of the rat medial temporal cortex. J Neurobiol, 45(3): 135–141
CrossRef Pubmed Google scholar
[50]
Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet M C, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell S K, Berwald-Netter Y, Denoulet P, Chelly J (1999). Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron, 23(2): 247–256
CrossRef Pubmed Google scholar
[51]
Friocourt G, Liu J S, Antypa M, Rakic S, Walsh C A, Parnavelas J G (2007). Both doublecortin and doublecortin-like kinase play a role in cortical interneuron migration. J Neurosci, 27(14): 3875–3883
CrossRef Pubmed Google scholar
[52]
Gage F H, Kempermann G, Song H (2008). Adult Neurogenesis, Vol 52. Cold Spring Harbor Laboratory Press
[53]
Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
CrossRef Pubmed Google scholar
[54]
Gómez-Climent M A, Castillo-Gómez E, Varea E, Guirado R, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nácher J (2008). A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex, 18(10): 2229–2240
CrossRef Pubmed Google scholar
[55]
Gomez-Climent M A, Guirado R, Varea E, Nàcher J (2010). “Arrested development”. Immature, but not recently generated, neurons in the adult brain. Arch Ital Biol, 148(2): 159–172
Pubmed
[56]
Gottfried J A, Winston J S, Dolan R J (2006). Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron, 49(3): 467–479
CrossRef Pubmed Google scholar
[57]
Gould E (2007).How widespread is adult neurogenesis in mammals? Nat Rev Neurosci, 8(6): 481–488
CrossRef Pubmed Google scholar
[58]
Gould E, Tanapat P, Hastings N B, Shors T J (1999). Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci, 3(5): 186–192
CrossRef Pubmed Google scholar
[59]
Gritti A, Vescovi A L, Galli R (2002). Adult neural stem cells: plasticity and developmental potential. J Physiol Paris, 96(1-2): 81–90
CrossRef Pubmed Google scholar
[60]
Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D (2010). Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J Neurosci, 30(36): 12036–12049
CrossRef Pubmed Google scholar
[61]
Hastings N B, Gould E (1999). Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol, 413(1): 146–154
CrossRef Pubmed Google scholar
[62]
He X, Zhang X M, Wu J, Fu J, Mou L, Lu D H, Cai Y, Luo X G, Pan A, Yan X X (2014). Olfactory experience modulates immature neuron development in postnatal and adult guinea pig piriform cortex. Neuroscience, 259: 101–112
CrossRef Pubmed Google scholar
[63]
Hevner R F, Hodge R D, Daza R A, Englund C (2006). Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res, 55(3): 223–233
CrossRef Pubmed Google scholar
[64]
Johnson C P, Fujimoto I, Rutishauser U, Leckband D E (2005). Direct evidence that neural cell adhesion molecule (NCAM) polysialylation increases intermembrane repulsion and abrogates adhesion. J Biol Chem, 280(1): 137–145
CrossRef Pubmed Google scholar
[65]
Kadohisa M, Wilson D A (2006a). Olfactory cortical adaptation facilitates detection of odors against background. J Neurophysiol, 95(3): 1888–1896
CrossRef Pubmed Google scholar
[66]
Kadohisa M, Wilson D A (2006b). Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proc Natl Acad Sci USA, 103(41): 15206–15211
CrossRef Pubmed Google scholar
[67]
Kang S H, Fukaya M, Yang J K, Rothstein J D, Bergles D E (2010). NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron, 68(4): 668–681
CrossRef Pubmed Google scholar
[68]
Kaplan M S (1981). Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol, 195(2): 323–338
CrossRef Pubmed Google scholar
[69]
Kapur A, Pearce R A, Lytton W W, Haberly L B (1997). GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells. J Neurophysiol, 78(5): 2531–2545
Pubmed
[70]
Kato T, Yokouchi K, Kawagishi K, Fukushima N, Miwa T, Moriizumi T, Kato T, Yokouchi K, Kawagishi K (2000). Fate of newly formed periglomerular cells in the olfactory bulb. Acta Otolaryngol, 120(7): 876–879
CrossRef Pubmed Google scholar
[71]
Kelsch W, Mosley C P, Lin C W, Lois C (2007). Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns. PLoS Biol, 5(11): e300
CrossRef Pubmed Google scholar
[72]
Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004). Milestones of neuronal development in the adult hippocampus. Trends Neurosci, 27(8): 447–452
CrossRef Pubmed Google scholar
[73]
Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G (2011). Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS ONE, 6(10): e25760
CrossRef Pubmed Google scholar
[74]
Komitova M, Zhu X, Serwanski D R, Nishiyama A (2009). NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol, 512(5): 702–716
CrossRef Pubmed Google scholar
[75]
König R, Rotheneichner P, Marschallinger J, Aigner L, Couillard-Despres S (2016). Adult Neurogenesis in the Hippocampus. Elsevier, pp. 145–176
[76]
Kornack D R, Rakic P (2001). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294(5549): 2127–2130
CrossRef Pubmed Google scholar
[77]
Kremer T, Jagasia R, Herrmann A, Matile H, Borroni E, Francis F, Kuhn H G, Czech C (2013). Analysis of adult neurogenesis: evidence for a prominent “non-neurogenic” DCX-protein pool in rodent brain. PLoS ONE, 8(5): e59269
CrossRef Pubmed Google scholar
[78]
Kuan C Y, Schloemer A J, Lu A, Burns K A, Weng W L, Williams M T, Strauss K I, Vorhees C V, Flavell R A, Davis R J, Sharp F R, Rakic P (2004). Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci, 24(47): 10763–10772
CrossRef Pubmed Google scholar
[79]
Kunz B A, Kohalmi S E (1991). Modulation of mutagenesis by deoxyribonucleotide levels. Annu Rev Genet, 25(1): 339–359
CrossRef Pubmed Google scholar
[80]
Lehner B, Sandner B, Marschallinger J, Lehner C, Furtner T, Couillard-Despres S, Rivera F J, Brockhoff G, Bauer H C, Weidner N, Aigner L (2011). The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival. Cell Tissue Res, 345(3): 313–328
CrossRef Pubmed Google scholar
[81]
Lemaire V, Koehl M, Le Moal M, Abrous D N (2000). Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA, 97(20): 11032–11037
CrossRef Pubmed Google scholar
[82]
Luskin M B, Boone M S (1994). Rate and pattern of migration of lineally-related olfactory bulb interneurons generated postnatally in the subventricular zone of the rat. Chem Senses, 19(6): 695–714
CrossRef Pubmed Google scholar
[83]
Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009). DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex, 19(5): 1028–1041
CrossRef Pubmed Google scholar
[84]
Luzzati F, Nato G, Oboti L, Vigna E, Rolando C, Armentano M, Bonfanti L, Fasolo A, Peretto P (2014). Quiescent neuronal progenitors are activated in the juvenile guinea pig lateral striatum and give rise to transient neurons. Development, 141(21): 4065–4075
CrossRef Pubmed Google scholar
[85]
Luzzati F, Peretto P, Aimar P, Ponti G, Fasolo A, Bonfanti L (2003). Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc Natl Acad Sci USA, 100(22): 13036–13041
CrossRef Pubmed Google scholar
[86]
Manganas L N, Zhang X, Li Y, Hazel R D, Smith S D, Wagshul M E, Henn F, Benveniste H, Djuric P M, Enikolopov G, Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852): 980–985
CrossRef Pubmed Google scholar
[87]
Markakis E A, Gage F H (1999). Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol, 406(4): 449–460
CrossRef Pubmed Google scholar
[88]
Martí-Mengual U, Varea E, Crespo C, Blasco-Ibáñez J M, Nacher J (2013). Cells expressing markers of immature neurons in the amygdala of adult humans. Eur J Neurosci, 37(1): 10–22
CrossRef Pubmed Google scholar
[89]
Mikkonen M, Soininen H, Kälviänen R, Tapiola T, Ylinen A, Vapalahti M, Paljärvi L, Pitkänen A (1998). Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol, 44(6): 923–934
CrossRef Pubmed Google scholar
[90]
Murphy K J, Fox G B, Foley A G, Gallagher H C, O’Connell A, Griffin A M, Nau H, Regan C M (2001). Pentyl-4-yn-valproic acid enhances both spatial and avoidance learning, and attenuates age-related NCAM-mediated neuroplastic decline within the rat medial temporal lobe. J Neurochem, 78(4): 704–714
CrossRef Pubmed Google scholar
[91]
Nacher J, Bonfanti L (2015). New neurons from old beliefs in the adult piriform cortex? A Commentary on: “Occurrence of new neurons in the piriform cortex”. Front Neuroanat, 9: 62
CrossRef Pubmed Google scholar
[92]
Nacher J, Crespo C, McEwen B S (2001). Doublecortin expression in the adult rat telencephalon. Eur J Neurosci, 14(4): 629–644
CrossRef Pubmed Google scholar
[93]
Nacher J, Lanuza E, McEwen B S (2002). Distribution of PSA-NCAM expression in the amygdala of the adult rat. Neuroscience, 113(3): 479–484
CrossRef Pubmed Google scholar
[94]
Neville K R, Haberly L B (2003). Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. J Neurophysiol, 90(6): 3921–3930
CrossRef Pubmed Google scholar
[95]
Ní Dhúill C M, Fox G B, Pittock S J, O’Connell A W, Murphy K J, Regan C M (1999). Polysialylated neural cell adhesion molecule expression in the dentate gyrus of the human hippocampal formation from infancy to old age. J Neurosci Res, 55(1): 99–106
CrossRef Pubmed Google scholar
[96]
Nishiyama A, Komitova M, Suzuki R, Zhu X (2009). Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci, 10(1): 9–22
CrossRef Pubmed Google scholar
[97]
Nishiyama A, Suzuki R, Zhu X (2014). NG2 cells (polydendrocytes) in brain physiology and repair. Front Neurosci, 8: 133
CrossRef Pubmed Google scholar
[98]
Nowakowski R S, Hayes N L (2000). New neurons: extraordinary evidence or extraordinary conclusion? Science, 288(5467): 771
CrossRef Pubmed Google scholar
[99]
Nowakowski R S, Lewin S B, Miller M W (1989). Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol, 18(3): 311–318
CrossRef Pubmed Google scholar
[100]
Okuda H, Tatsumi K, Makinodan M, Yamauchi T, Kishimoto T, Wanaka A (2009). Environmental enrichment stimulates progenitor cell proliferation in the amygdala. J Neurosci Res, 87(16): 3546–3553
CrossRef Pubmed Google scholar
[101]
Patzke N, LeRoy A, Ngubane N W, Bennett N C, Medger K, Gravett N, Kaswera-Kyamakya C, Gilissen E, Chawana R, Manger P R (2014). The distribution of doublecortin-immunopositive cells in the brains of four afrotherian mammals: the Hottentot golden mole (Amblysomus hottentotus), the rock hyrax (Procavia capensis), the eastern rock sengi (Elephantulus myurus) and the four-toed sengi (Petrodromus tetradactylus). Brain Behav Evol, 84(3): 227–241
CrossRef Pubmed Google scholar
[102]
Peretto P, Bonfanti L (2014). Major unsolved points in adult neurogenesis: doors open on a translational future? Front Neurosci, 8: 154
CrossRef Pubmed Google scholar
[103]
Petreanu L, Alvarez-Buylla A (2002). Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci, 22(14): 6106–6113
Pubmed
[104]
Pierce A A, Xu A W (2010). De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci, 30(2): 723–730
CrossRef Pubmed Google scholar
[105]
Psachoulia K, Jamen F, Young K M, Richardson W D (2009). Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol, 5(3-4): 57–67
CrossRef Pubmed Google scholar
[106]
Purves D, Augustine G J, Flitzpatrick D, Katz L C, LaMantia A S, McNamara J O, Williams S M (2001). Neuroscience, 2nd edition. Sunderland (MA): Sinauer Associates
[107]
Richardson W D, Young K M, Tripathi R B, McKenzie I (2011). NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron, 70(4): 661–673
CrossRef Pubmed Google scholar
[108]
Rivers L E, Young K M, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson W D (2008). PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci, 11(12): 1392–1401
CrossRef Pubmed Google scholar
[109]
Robins S C, Trudel E, Rotondi O, Liu X, Djogo T, Kryzskaya D, Bourque C W, Kokoeva M V (2013). Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS ONE, 8(10): e78236
CrossRef Pubmed Google scholar
[110]
Rosselli-Austin L, Altman J (1979). The postnatal development of the main olfactory bulb of the rat. J Dev Physiol, 1(4): 295–313
Pubmed
[111]
Rossi S L, Mahairaki V, Zhou L, Song Y, Koliatsos V E (2014). Remodeling of the piriform cortex after lesion in adult rodents. Neuroreport, 25(13): 1006–1012
CrossRef Pubmed Google scholar
[112]
Rubio A, Belles M, Belenguer G, Vidueira S, Fariñas I, Nacher J (2015). Characterization and isolation of immature neurons of the adult mouse piriform cortex. Dev Neurobiol, doi: 10.1002/dneu.22357
Pubmed
[113]
Rutishauser U (2008). Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci, 9(1): 26–35
CrossRef Pubmed Google scholar
[114]
Saegusa T, Mine S, Iwasa H, Murai H, Seki T, Yamaura A, Yuasa S (2004). Involvement of highly polysialylated neural cell adhesion molecule (PSA-NCAM)-positive granule cells in the amygdaloid-kindling-induced sprouting of a hippocampal mossy fiber trajectory. Neurosci Res, 48(2): 185–194
CrossRef Pubmed Google scholar
[115]
Sairanen M, O’Leary O F, Knuuttila J E, Castrén E (2007). Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience, 144(1): 368–374
CrossRef Pubmed Google scholar
[116]
Sanai N, Nguyen T, Ihrie R A, Mirzadeh Z, Tsai H H, Wong M, Gupta N, Berger M S, Huang E, Garcia-Verdugo J M, Rowitch D H, Alvarez-Buylla A (2011). Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 478(7369): 382–386
CrossRef Pubmed Google scholar
[117]
Seki T, Arai Y (1999). Temporal and spacial relationships between PSA-NCAM-expressing, newly generated granule cells, and radial glia-like cells in the adult dentate gyrus. J Comp Neurol, 410(3): 503–513
CrossRef Pubmed Google scholar
[118]
Shapiro L A, Ng K, Zhou Q Y, Ribak C E (2009). Subventricular zone-derived, newly generated neurons populate several olfactory and limbic forebrain regions. Epilepsy Behav, 14(Suppl 1): 74–80
CrossRef Pubmed Google scholar
[119]
Shapiro L A, Ng K L, Kinyamu R, Whitaker-Azmitia P, Geisert E E, Blurton-Jones M, Zhou Q Y, Ribak C E (2007a). Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex. Brain Struct Funct, 212(2): 133–148
CrossRef Pubmed Google scholar
[120]
Shapiro L A, Ng K L, Zhou Q Y, Ribak C E (2007b). Olfactory enrichment enhances the survival of newly born cortical neurons in adult mice. Neuroreport, 18(10): 981–985
CrossRef Pubmed Google scholar
[121]
Shechter R, Ziv Y, Schwartz M (2007). New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells, 25(9): 2277–2282
CrossRef Pubmed Google scholar
[122]
Shors T J, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410(6826): 372–376
CrossRef Pubmed Google scholar
[123]
Shors T J, Townsend D A, Zhao M, Kozorovitskiy Y, Gould E (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12(5): 578–584
CrossRef Pubmed Google scholar
[124]
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
CrossRef Pubmed Google scholar
[125]
Suzuki N, Bekkers J M (2007). Inhibitory interneurons in the piriform cortex. Clin Exp Pharmacol Physiol, 34(10): 1064–1069
CrossRef Pubmed Google scholar
[126]
Suzuki N, Bekkers J M (2010a). Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex. Cereb Cortex, 20(12): 2971–2984
CrossRef Pubmed Google scholar
[127]
Suzuki N, Bekkers J M (2010b). Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol, 518(10): 1670–1687
CrossRef Pubmed Google scholar
[128]
Takemura N U (2005). Evidence for neurogenesis within the white matter beneath the temporal neocortex of the adult rat brain. Neuroscience, 134(1): 121–132
CrossRef Pubmed Google scholar
[129]
Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907
CrossRef Pubmed Google scholar
[130]
Toni N, Teng E M, Bushong E A, Aimone J B, Zhao C, Consiglio A, van Praag H, Martone M E, Ellisman M H, Gage F H (2007). Synapse formation on neurons born in the adult hippocampus. Nat Neurosci, 10(6): 727–734
CrossRef Pubmed Google scholar
[131]
van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030–1034
CrossRef Pubmed Google scholar
[132]
Varea E, Belles M, Vidueira S, Blasco-Ibáñez J M, Crespo C, Pastor A M, Nacher J (2011). PSA-NCAM is Expressed in Immature, but not Recently Generated, Neurons in the Adult Cat Cerebral Cortex Layer II. Front Neurosci, 5: 17
CrossRef Pubmed Google scholar
[133]
Varea E, Castillo-Gómez E, Gómez-Climent M A, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nàcher J (2007).PSA-NCAM expression in the human prefrontal cortex. J Chem Neuroanat, 33(4): 202–209
CrossRef Pubmed Google scholar
[134]
Varea E, Castillo-Gómez E, Gómez-Climent M A, Guirado R, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nácher J (2009). Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiol Aging, 30(5): 808–818
CrossRef Pubmed Google scholar
[135]
Vessal M, Aycock A, Garton M T, Ciferri M, Darian-Smith C (2007). Adult neurogenesis in primate and rodent spinal cord: comparing a cervical dorsal rhizotomy with a dorsal column transection. Eur J Neurosci, 26(10): 2777–2794
CrossRef Pubmed Google scholar
[136]
Vivar C, van Praag H (2013). Functional circuits of new neurons in the dentate gyrus. Front Neural Circuits, 7: 15
CrossRef Pubmed Google scholar
[137]
Winner B, Cooper-Kuhn C M, Aigner R, Winkler J, Kuhn H G (2002). Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci, 16(9): 1681–1689
CrossRef Pubmed Google scholar
[138]
Xiong K, Cai Y, Zhang X M, Huang J F, Liu Z Y, Fu G M, Feng J C, Clough R W, Patrylo P R, Luo X G, Hu C H, Yan X X (2010). Layer I as a putative neurogenic niche in young adult guinea pig cerebrum. Mol Cell Neurosci, 45(2): 180–191
CrossRef Pubmed Google scholar
[139]
Xiong K, Luo D W, Patrylo P R, Luo X G, Struble R G, Clough R W, Yan X X (2008). Doublecortin-expressing cells are present in layer II across the adult guinea pig cerebral cortex: partial colocalization with mature interneuron markers. Exp Neurol, 211(1): 271–282
CrossRef Pubmed Google scholar
[140]
Yang Y, Geldmacher D S, Herrup K (2001). DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci, 21(8): 2661–2668
Pubmed
[141]
Yang Y, Xie M X, Li J M, Hu X, Patrylo P R, Luo X G, Cai Y, Li Z, Yan X X (2015). Prenatal genesis of layer II doublecortin expressing neurons in neonatal and young adult guinea pig cerebral cortex. Front Neuroanat, 9: 109
CrossRef Pubmed Google scholar
[142]
Yuan T F, Liang Y X, So K F (2014). Occurrence of new neurons in the piriform cortex. Front Neuroanat, 8: 167
Pubmed
[143]
Yuan T F, Liang Y X, So K F (2015). Response: New neurons from old beliefs in the adult piriform cortex? A Commentary on: “Occurrence of new neurons in the piriform cortex”. Front Neuroanat, 9: 79
CrossRef Pubmed Google scholar
[144]
Zhang J, Giesert F, Kloos K, Vogt Weisenhorn D M, Aigner L, Wurst W, Couillard-Despres S (2010). A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons. BMC Neurosci, 11(1): 158
CrossRef Pubmed Google scholar
[145]
Zhang X M, Cai Y, Chu Y, Chen E Y, Feng J C, Luo X G, Xiong K, Struble R G, Clough R W, Patrylo P R, Kordower J H, Yan X X (2009). Doublecortin-expressing cells persist in the associative cerebral cortex and amygdala in aged nonhuman primates. Front Neuroanat, 3: 17
CrossRef Pubmed Google scholar
[146]
Zhu X, Bergles D E, Nishiyama A (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development, 135(1): 145–157
CrossRef Pubmed Google scholar
[147]
Zhu X, Hill R A, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011). Age-dependent fate and lineage restriction of single NG2 cells. Development, 138(4): 745–753
CrossRef Pubmed Google scholar
[148]
Zigova T, Betarbet R, Soteres B J, Brock S, Bakay R A, Luskin M B (1996). A comparison of the patterns of migration and the destinations of homotopically transplanted neonatal subventricular zone cells and heterotopically transplanted telencephalic ventricular zone cells. Dev Biol, 173(2): 459–474
CrossRef Pubmed Google scholar

Acknowledgments

We would like to acknowledge Mr. Mark O′ Sullivan for his intellectual and literary input on this paper and Mag. Roman Fuchs for the images provided.

Compliance with ethics guidelines

Richard König, Bruno Benedetti, Peter Rotheneichner, Anna O’Sullivan, Christina Kreutzer, Maria Belles, Juan Nacher, M. Thomas Weiger, Ludwig Aigner, and Sébastien Couillard-Després declare that they have no conflicts of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(1239 KB)

Accesses

Citations

Detail

Sections
Recommended

/