REVIEW

Transgenic mouse models for studying adult neurogenesis

  • Fatih Semerci 1,2 ,
  • Mirjana Maletic-Savatic , 1,2,3
Expand
  • 1. Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
  • 2. Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
  • 3. Department of Pediatrics-Neurology, Department of Neuroscience, and Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA

Received date: 25 Apr 2016

Accepted date: 20 May 2016

Published date: 05 Jul 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has garnered significant interest because targeting it could be a novel potential therapeutic strategy for these disorders. However, if we are to use neurogenesis to halt or reverse hippocampal-related pathology, we need to understand better the core molecular machinery that governs NSC and their progeny. In this review, we summarize a wide variety of mouse models used in adult neurogenesis field, present their advantages and disadvantages based on specificity and efficiency of labeling of different cell types, and review their contribution to our understanding of the biology and the heterogeneity of different cell types found in adult neurogenic niches.

Cite this article

Fatih Semerci , Mirjana Maletic-Savatic . Transgenic mouse models for studying adult neurogenesis[J]. Frontiers in Biology, 2016 , 11(3) : 151 -167 . DOI: 10.1007/s11515-016-1405-3

Acknowledgments

We thank the members of Maletic-Savatic laboratory for comments and critical reading of the paper. This project was supported by the Dana Foundation, the McKnight Endowment for Science, the CPRIT grant (RP130573CPRIT), and the Nancy Chang Award for Research Excellence (M.M.S.). The research was also supported in part by the Baylor College of Medicine Microscopy Core (P30HD024064 Intellectual and Developmental Disabilities Research Grant from the Eunice Kennedy Shriver National Institute of Child Health and Human Development). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.‚‚

Compliance with ethics guidelines

Fatih Semerci and Mirjana Maletić-Savatić declare no conflicts of interest.
This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1a
Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, Gómez-Nicola D, Domercq M, Pérez-Samartín A, Sánchez-Zafra V, Paris I, Valero J, Savage JC, Hui CW, Tremblay MÈ, Deudero JJ, Brewster AL, Anderson AE, Zaldumbide L, Galbarriatu L, Marinas A, Vivanco M D, Matute C, Maletic-Savatic M, Encinas JM, Sierra A (2016). Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling. PLoS Biol, 14(5): e1002466

DOI PMID

1
Abraham A B, Bronstein R, Chen E I, Koller A, Ronfani L, Maletic-Savatic M, Tsirka S E (2013a). Members of the high mobility group B protein family are dynamically expressed in embryonic neural stem cells. Proteome Sci, 11(1): 18

DOI PMID

2
Abraham A B, Bronstein R, Reddy A S, Maletic-Savatic M, Aguirre A, Tsirka S E (2013b). Aberrant neural stem cell proliferation and increased adult neurogenesis in mice lacking chromatin protein HMGB2. PLoS ONE, 8(12): e84838

DOI PMID

3
Ahn S, Joyner A L (2004). Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell, 118(4): 505–516

DOI PMID

4
Ahn S, Joyner A L (2005). In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 437(7060): 894–897

DOI PMID

5
Aimone J B, Deng W, Gage F H (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70(4): 589–596

DOI PMID

6
Akazawa C, Sasai Y, Nakanishi S, Kageyama R (1992). Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J Biol Chem, 267(30): 21879–21885

PMID

7
Allen G I, Maletić-Savatić M (2011). Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics, 27(21): 3029–3035

DOI PMID

8
Allen G I, Peterson C, Vannucci M, Maletić-Savatić M (2013). Regularized partial least squares with an application to NMR spectroscopy. Stat Anal Data Min, 6(4): 302–314

DOI PMID

9
Altman J (1962). Are new neurons formed in the brains of adult mammals? Science, 135(3509): 1127–1128

DOI PMID

10
Alunni A, Krecsmarik M, Bosco A, Galant S, Pan L, Moens C B, Bally-Cuif L (2013). Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. Development, 140(16): 3335–3347

DOI PMID

11
Alvarez-Buylla A, Kohwi M, Nguyen T M, Merkle F T (2008). The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb Symp Quant Biol, 73(0): 357–365

DOI PMID

12
Andersson E R, Sandberg R, Lendahl U (2011). Notch signaling: simplicity in design, versatility in function. Development, 138(17): 3593–3612

DOI PMID

13
Anthony T E, Klein C, Fishell G, Heintz N (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron, 41(6): 881–890

DOI PMID

14
Arnold J M, Choi W T, Sreekumar A, Maletić-Savatić M (2015). Analytical strategies for studying stem cell metabolism. Front Biol (Beijing), 10(2): 141–153

DOI PMID

15
Arnold K, Sarkar A, Yram M A, Polo J M, Bronson R, Sengupta S, Seandel M, Geijsen N, Hochedlinger K (2011). Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell, 9(4): 317–329

DOI PMID

16
Aubert J, Stavridis M P, Tweedie S, O’Reilly M, Vierlinger K, Li M, Ghazal P, Pratt T, Mason J O, Roy D, Smith A (2003). Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc Natl Acad Sci USA, 100(Suppl 1): 11836–11841

DOI PMID

17
Balordi F, Fishell G (2007). Mosaic removal of hedgehog signaling in the adult SVZ reveals that the residual wild-type stem cells have a limited capacity for self-renewal. J Neurosci, 27(52): 14248–14259

DOI PMID

18
Balthasar N, Coppari R, McMinn J, Liu S M, Lee C E, Tang V, Kenny C D, McGovern R A, Chua S C Jr, Elmquist J K, Lowell B B (2004). Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron, 42(6): 983–991

DOI PMID

19
Basak O, Giachino C, Fiorini E, Macdonald H R, Taylor V (2012). Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent in their active but not quiescent state. J Neurosci, 32(16): 5654–5666

DOI PMID

20
Basak O, Taylor V (2007). Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur J Neurosci, 25(4): 1006–1022

DOI PMID

21
Beckervordersandforth R, Deshpande A, Schäffner I, Huttner H B, Lepier A, Lie D C, Götz M (2014). In vivo targeting of adult neural stem cells in the dentate gyrus by a split-cre approach. Stem Cell Rep, 2(2): 153–162

DOI PMID

22
Beech R D, Cleary M A, Treloar H B, Eisch A J, Harrist A V, Zhong W, Greer C A, Duman R S, Picciotto M R (2004). Nestin promoter/enhancer directs transgene expression to precursors of adult generated periglomerular neurons. J Comp Neurol, 475(1): 128–141

DOI PMID

23
Berg D A, Yoon K J, Will B, Xiao A Y, Kim N S, Christian K M, Song H, Ming G (2015). Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis. Frontiers in Biology, 10(3): 262–271

DOI

24
Berninger B, Costa M R, Koch U, Schroeder T, Sutor B, Grothe B, Götz M (2007). Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci, 27(32): 8654–8664

DOI PMID

25
Bertrand N, Castro D S, Guillemot F (2002). Proneural genes and the specification of neural cell types. Nat Rev Neurosci, 3(7): 517–530

DOI PMID

26
Betz U A, Vosshenrich C A, Rajewsky K, Müller W (1996). Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr Biol, 6(10): 1307–1316

DOI PMID

27
Bonaguidi M A, Song J, Ming G L, Song H (2012). A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol, 22(5): 754–761

DOI PMID

28
Bonaguidi M A, Wheeler M A, Shapiro J S, Stadel R P, Sun G J, Ming G L, Song H (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 145(7): 1142–1155

DOI PMID

29
Bond A M, Ming G L, Song H (2015). Adult mammalian neural stem cells and neurogenesis: Five Decades Later. Cell Stem Cell, 17(4): 385–395

DOI PMID

30
Bracko O, Singer T, Aigner S, Knobloch M, Winner B, Ray J, Clemenson G D Jr, Suh H, Couillard-Despres S, Aigner L, Gage F H, Jessberger S (2012). Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J Neurosci, 32(10): 3376–3387

DOI PMID

31
Breunig J J, Silbereis J, Vaccarino F M, Sestan N, Rakic P (2007). Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci USA, 104(51): 20558–20563

DOI PMID

32
Brill M S, Ninkovic J, Winpenny E, Hodge R D, Ozen I, Yang R, Lepier A, Gascón S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner R F, Raineteau O, Götz M (2009). Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci, 12(12): 1524–1533

DOI PMID

33
Cameron H A, Woolley C S, McEwen B S, Gould E (1993). Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience, 56(2): 337–344

DOI PMID

34
Casper K B, McCarthy K D (2006). GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci, 31(4): 676–684

DOI PMID

35
Chapouton P, Skupien P, Hesl B, Coolen M, Moore J C, Madelaine R, Kremmer E, Faus-Kessler T, Blader P, Lawson N D, Bally-Cuif L (2010). Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J Neurosci, 30(23): 7961–7974

DOI PMID

36
Chen J, Kelz M B, Zeng G, Sakai N, Steffen C, Shockett P E, Picciotto M R, Duman R S, Nestler E J (1998). Transgenic animals with inducible, targeted gene expression in brain. Mol Pharmacol, 54(3): 495–503

PMID

37
Chojnacki A K, Mak G K, Weiss S (2009). Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci, 10(2): 153–163

DOI PMID

38
Chuang J Z, Milner T A, Sung C H (2001). Subunit heterogeneity of cytoplasmic dynein: Differential expression of 14 kDa dynein light chains in rat hippocampus. J Neurosci, 21(15): 5501–5512

PMID

39
Clelland C D, Choi M, Romberg C, Clemenson G D Jr, Fragniere A, Tyers P, Jessberger S, Saksida L M, Barker R A, Gage F H, Bussey T J (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937): 210–213

DOI PMID

40
Codega P, Silva-Vargas V, Paul A, Maldonado-Soto A R, Deleo A M, Pastrana E, Doetsch F (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 82(3): 545–559

DOI PMID

41
Collignon J (1992). Study of a new family of genes related to the mammalian testis determining gene (Phd Thesis: CNAA London).

42
Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L (2006). Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci, 24(6): 1535–1545

DOI PMID

43
Cowley M A, Smart J L, Rubinstein M, Cerdán M G, Diano S, Horvath T L, Cone R D, Low M J (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411(6836): 480–484

DOI PMID

44
D’Amour K A, Gage F H (2003). Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc Natl Acad Sci USA, 100(Suppl 1): 11866–11872

DOI PMID

45
David D J, Wang J, Samuels B A, Rainer Q, David I, Gardier A M, Hen R (2010). Implications of the functional integration of adult-born hippocampal neurons in anxiety-depression disorders. Neuroscientist, 16(5): 578–591

DOI PMID

46
Day K, Shefer G, Richardson J B, Enikolopov G, Yablonka-Reuveni Z (2007). Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol, 304(1): 246–259

DOI PMID

47
DeCarolis N A, Mechanic M, Petrik D, Carlton A, Ables J L, Malhotra S, Bachoo R, Götz M, Lagace D C, Eisch A J (2013). In vivo contribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis. Hippocampus, 23(8): 708–719

DOI PMID

48
Dedesma C, Chuang J Z, Alfinito P D, Sung C H (2006). Dynein light chain Tctex-1 identifies neural progenitors in adult brain. J Comp Neurol, 496(6): 773–786

DOI PMID

49
Deng W, Saxe M D, Gallina I S, Gage F H (2009). Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci, 29(43): 13532–13542

DOI PMID

50
Djuric P M, Wagshul M E, Henn F B,  Enikolopov G, Maletic-Savatic M ( (2008). Singular Value Decomposition algorithm for detection of neural progenitor cells in the live human brain. Science, 321: 640

DOI PMID

51
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061

PMID

52
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1999). Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA, 96(20): 11619–11624

DOI PMID

53
Dranovsky A, Picchini A M, Moadel T, Sisti A C, Yamada A, Kimura S, Leonardo E D, Hen R (2011). Experience dictates stem cell fate in the adult hippocampus. Neuron, 70(5): 908–923

DOI PMID

54
Dupret D, Revest J M, Koehl M, Ichas F, De Giorgi F, Costet P, Abrous D N, Piazza P V (2008). Spatial relational memory requires hippocampal adult neurogenesis. PLoS One, 3: e1959

55
Ellis P, Fagan B M, Magness S T, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci, 26(2-4): 148–165

DOI PMID

56
Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579

DOI PMID

57
Encinas J M, Vaahtokari A, Enikolopov G (2006). Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA, 103(21): 8233–8238

DOI PMID

58
Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247–251

DOI PMID

59
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317

DOI PMID

60
Farioli-Vecchioli S, Saraulli D, Costanzi M, Pacioni S, Cinà I, Aceti M, Micheli L, Bacci A, Cestari V, Tirone F (2008). The timing of differentiation of adult hippocampal neurons is crucial for spatial memory. PLoS Biol, 6(10): e246

DOI PMID

61
Farnsworth D R, Bayraktar O A, Doe C Q (2015). Aging Neural Progenitors Lose Competence to Respond to Mitogenic Notch Signaling. Curr Biol, 25(23): 3058–3068

DOI PMID

62
Favaro R, Valotta M, Ferri A L, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis S K (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci, 12(10): 1248–1256

DOI PMID

63
Ferri A L, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi P P, Sala M, DeBiasi S, Nicolis S K (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131(15): 3805–3819

DOI PMID

64
Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang L P, Yamaguchi M, Kettenmann H, Kempermann G (2003). Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci, 23(3): 373–382

DOI PMID

65
Gama-Norton L, Ferrando E, Ruiz-Herguido C, Liu Z, Guiu J, Islam A B, Lee S U, Yan M, Guidos C J, López-Bigas N, Maeda T, Espinosa L, Kopan R, Bigas A (2015). Notch signal strength controls cell fate in the haemogenic endothelium. Nat Commun, 6: 8510

DOI PMID

66
Ganat Y M, Silbereis J, Cave C, Ngu H, Anderson G M, Ohkubo Y, Ment L R, Vaccarino F M (2006). Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci, 26(33): 8609–8621

DOI PMID

67
Garcia A D, Doan N B, Imura T, Bush T G, Sofroniew M V (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci, 7(11): 1233–1241

DOI PMID

68
Gheusi G, Cremer H, McLean H, Chazal G, Vincent J D, Lledo P M (2000). Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci USA, 97(4): 1823–1828

DOI PMID

69
Giachino C, Basak O, Lugert S, Knuckles P, Obernier K, Fiorelli R, Frank S, Raineteau O, Alvarez-Buylla A, Taylor V (2014). Molecular diversity subdivides the adult forebrain neural stem cell population. Stem Cells, 32(1): 70–84

DOI PMID

70
Giachino C, Taylor V (2014). Notching up neural stem cell homogeneity in homeostasis and disease. Front Neurosci, 8: 32

DOI PMID

71
Glowatzki E, Cheng N, Hiel H, Yi E, Tanaka K, Ellis-Davies G C, Rothstein J D, Bergles D E (2006). The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea. J Neurosci, 26(29): 7659–7664

DOI PMID

72
Gong S, Zheng C, Doughty M L, Losos K, Didkovsky N, Schambra U B, Nowak N J, Joyner A, Leblanc G, Hatten M E, Heintz N (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature, 425(6961): 917–925

DOI PMID

73
Hartfuss E, Galli R, Heins N, Götz M (2001). Characterization of CNS precursor subtypes and radial glia. Dev Biol, 229(1): 15–30

DOI PMID

74
Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004). Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development, 131(22): 5539–5550

DOI PMID

75
Hayashi A, Koob J W, Liu D Z, Tong A Y, Hunter D A, Parsadanian A, Mackinnon S E, Myckatyn T M (2007). A double-transgenic mouse used to track migrating Schwann cells and regenerating axons following engraftment of injured nerves. Exp Neurol, 207(1): 128–138

DOI PMID

76
Hegedus B, Dasgupta B, Shin J E, Emnett R J, Hart-Mahon E K, Elghazi L, Bernal-Mizrachi E, Gutmann D H (2007). Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell, 1(4): 443–457

DOI PMID

77
Heine V M, Zareno J, Maslam S, Joëls M, Lucassen P J (2005). Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci, 21(5): 1304–1314

DOI PMID

78
Hirrlinger P G, Scheller A, Braun C, Quintela-Schneider M, Fuss B, Hirrlinger J, Kirchhoff F (2005). Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Mol Cell Neurosci, 30(3): 291–303

DOI PMID

79
Hockfield S, McKay R D (1985). Identification of major cell classes in the developing mammalian nervous system. J Neurosci, 5(12): 3310–3328

PMID

80
Hodge R D, Kowalczyk T D, Wolf S A, Encinas J M, Rippey C, Enikolopov G, Kempermann G, Hevner R F (2008). Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci, 28(14): 3707–3717

DOI PMID

81
Hunt R F, Dinday M T, Hindle-Katel W, Baraban S C (2012). LIS1 deficiency promotes dysfunctional synaptic integration of granule cells generated in the developing and adult dentate gyrus. J Neurosci, 32(37): 12862–12875

DOI PMID

82
Imayoshi I, Ohtsuka T, Metzger D, Chambon P, Kageyama R (2006). Temporal regulation of Cre recombinase activity in neural stem cells. Genesis, 44(5): 233–238

DOI PMID

83
Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008). Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci, 11(10): 1153–1161

DOI PMID

84
Jacobs B L, van Praag H, Gage F H (2000). Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry, 5(3): 262–269

DOI PMID

85
Jessberger S, Toni N, Clemenson G D Jr, Ray J, Gage F H (2008). Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci, 11(8): 888–893

DOI PMID

86
Joëls M, Karst H, Krugers H J, Lucassen P J (2007). Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol, 28(2-3): 72–96

DOI PMID

87
Johansson C B, Lothian C, Molin M, Okano H, Lendahl U (2002). Nestin enhancer requirements for expression in normal and injured adult CNS. J Neurosci Res, 69(6): 784–794

DOI PMID

88
Josephson R, Müller T, Pickel J, Okabe S, Reynolds K, Turner P A, Zimmer A, McKay R D (1998). POU transcription factors control expression of CNS stem cell-specific genes. Development, 125(16): 3087–3100

PMID

89
Jourdon A, Gresset A, Spassky N, Charnay P, Topilko P, Santos R (2015). Prss56, a novel marker of adult neurogenesis in the mouse brain. Brain Struct Funct, doi: 10.1007/s00429-015-1171-z

90
Jump D B, Oppenheimer J H (1985). High basal expression and 3,5,3′-triiodothyronine regulation of messenger ribonucleic acid S14 in lipogenic tissues. Endocrinology, 117(6): 2259–2266

DOI PMID

91
Kageyama R, Ohtsuka T (1999). The Notch-Hes pathway in mammalian neural development. Cell Res, 9(3): 179–188

DOI PMID

92
Kamachi Y, Kondoh H (2013). Sox proteins: regulators of cell fate specification and differentiation. Development, 140(20): 4129–4144

DOI PMID

93
Kang W, Hébert J M (2012). A Sox2 BAC transgenic approach for targeting adult neural stem cells. PLoS ONE, 7(11): e49038

DOI PMID

94
Karow M, Sánchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascón S, Khan M A, Lie D C, Dellavalle A, Cossu G, Goldbrunner R, Götz M, Berninger B (2012). Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell, 11(4): 471–476

DOI PMID

95
Kawaguchi A, Miyata T, Sawamoto K, Takashita N, Murayama A, Akamatsu W, Ogawa M, Okabe M, Tano Y, Goldman S A, Okano H (2001). Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci, 17(2): 259–273

DOI PMID

96
Kim E J, Ables J L, Dickel L K, Eisch A J, Johnson J E (2011). Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS ONE, 6(3): e18472

DOI PMID

97
Kim E J, Leung C T, Reed R R, Johnson J E (2007). In vivo analysis of Ascl1 defined progenitors reveals distinct developmental dynamics during adult neurogenesis and gliogenesis. J Neurosci, 27(47): 12764–12774

DOI PMID

98
Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H, Sekiguchi M, Sugiyama H, Inokuchi K (2009). Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell, 139(4): 814–827

DOI PMID

99
Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230

DOI PMID

100
Knobloch M, von Schoultz C, Zurkirchen L, Braun S M, Vidmar M, Jessberger S (2014). SPOT14-positive neural stem/progenitor cells in the hippocampus respond dynamically to neurogenic regulators. Stem Cell Rep, 3(5): 735–742

DOI PMID

101
Kuo C T, Mirzadeh Z, Soriano-Navarro M, Rasin M, Wang D, Shen J, Sestan N, Garcia-Verdugo J, Alvarez-Buylla A, Jan L Y, Jan Y N (2006). Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell, 127(6): 1253–1264

DOI PMID

102
Kwon G S, Hadjantonakis A K (2007). Eomes: GFP-a tool for live imaging cells of the trophoblast, primitive streak, and telencephalon in the mouse embryo. Genesis, 45(4): 208–217

DOI PMID

103
Lagace D C, Whitman M C, Noonan M A, Ables J L, DeCarolis N A, Arguello A A, Donovan M H, Fischer S J, Farnbauch L A, Beech R D, DiLeone R J, Greer C A, Mandyam C D, Eisch A J (2007). Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J Neurosci, 27(46): 12623–12629

DOI PMID

104
Lai K, Kaspar B K, Gage F H, Schaffer D V (2003). Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci, 6(1): 21–27

DOI PMID

105
Lendahl U, Zimmerman L B, McKay R D (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4): 585–595

DOI PMID

106
Leung C T, Coulombe P A, Reed R R (2007). Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci, 10(6): 720–726

DOI PMID

107
Li D, Takeda N, Jain R, Manderfield L J, Liu F, Li L, Anderson S A, Epstein J A (2015). Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Res (Amst), 15(3): 522–529

DOI PMID

108
Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman R M (2003). Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA, 100(17): 9958–9961

DOI PMID

109
Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang C C, Kain S R (1998). Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem, 273(52): 34970–34975

DOI PMID

110
Lobo M V, Arenas M I, Alonso F J, Gomez G, Bazán E, Paíno C L, Fernández E, Fraile B, Paniagua R, Moyano A, Caso E (2004). Nestin, a neuroectodermal stem cell marker molecule, is expressed in Leydig cells of the human testis and in some specific cell types from human testicular tumours. Cell Tissue Res, 316(3): 369–376

DOI PMID

111
Lois C, Alvarez-Buylla A (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264(5162): 1145–1148

DOI PMID

112
Lothian C, Prakash N, Lendahl U, Wahlström G M (1999). Identification of both general and region-specific embryonic CNS enhancer elements in the nestin promoter. Exp Cell Res, 248(2): 509–519

DOI PMID

113
Lucassen P J, Oomen C A, Naninck E F, Fitzsimons C P, van Dam A M, Czeh B, Korosi A (2015). Regulation of Adult Neurogenesis and Plasticity by (Early) Stress, Glucocorticoids, and Inflammation. Cold Spring Harb Perspect Biol, 7(9): a021303

DOI PMID

114
Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445–456

DOI PMID

115
Lugert S, Vogt M, Tchorz J S, Müller M, Giachino C, Taylor V (2012). Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1(high) intermediate progenitors. Nat Commun, 3: 670

DOI PMID

116
Luskin M B (1993). Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 11(1): 173–189

DOI PMID

117
Machold R, Hayashi S, Rutlin M, Muzumdar M D, Nery S, Corbin J G, Gritli-Linde A, Dellovade T, Porter J A, Rubin L L, Dudek H, McMahon A P, Fishell G (2003). Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron, 39(6): 937–950

DOI PMID

118a
Mainen Z F, Maletic-Savatic M, Shi S H, Hayashi Y, Malinow R, Svoboda K (1999). Two-photon imaging in living brain slices. Methods, 18: 231–239

DOI PMID

118
Mak G K, Enwere E K, Gregg C, Pakarainen T, Poutanen M, Huhtaniemi I, Weiss S (2007). Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat Neurosci, 10(8): 1003–1011

DOI PMID

119
Malberg J E, Eisch A J, Nestler E J, Duman R S (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci, 20(24): 9104–9110

PMID

120
Maletić-Savatić M, Vingara L K, Manganas L N, Li Y, Zhang S, Sierra A, Hazel R, Smith D, Wagshul M E, Henn F, Krupp L, Enikolopov G, Benveniste H, Djurić P M, Pelczer I (2008). Metabolomics of neural progenitor cells: a novel approach to biomarker discovery. Cold Spring Harb Symp Quant Biol, 73(0): 389–401

DOI PMID

121
Manganas L N, Maletic-Savatic M (2005). Stem cell therapy for central nervous system demyelinating disease. Curr Neurol Neurosci Rep, 5(3): 225–231

DOI PMID

122
Manganas L N, Zhang X, Li Y, Hazel R D, Smith S D, Wagshul M E, Henn F, Benveniste H, Djuric P M, Enikolopov G, Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852): 980–985

DOI PMID

123
Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A (2000). Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev, 14(8): 994–1004

PMID

124
Mayer E J, Hughes E H, Carter D A, Dick A D (2003). Nestin positive cells in adult human retina and in epiretinal membranes. Br J Ophthalmol, 87(9): 1154–1158

DOI PMID

125
McConnell J, Petrie L, Stennard F, Ryan K, Nichols J (2005). Eomesodermin is expressed in mouse oocytes and pre-implantation embryos. Mol Reprod Dev, 71(4): 399–404

DOI PMID

126
McHugh T J, Jones M W, Quinn J J, Balthasar N, Coppari R, Elmquist J K, Lowell B B, Fanselow M S, Wilson M A, Tonegawa S (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317(5834): 94–99

DOI PMID

127
Mignone J L, Kukekov V, Chiang A S, Steindler D, Enikolopov G (2004). Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol, 469(3): 311–324

DOI PMID

128
Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702

DOI PMID

129
Mitsuhashi T, Aoki Y, Eksioglu Y Z, Takahashi T, Bhide P G, Reeves S A, Caviness V S Jr (2001). Overexpression of p27Kip1 lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells. Proc Natl Acad Sci USA, 98(11): 6435–6440

DOI PMID

130
Miyagi S, Nishimoto M, Saito T, Ninomiya M, Sawamoto K, Okano H, Muramatsu M, Oguro H, Iwama A, Okuda A (2006). The Sox2 regulatory region 2 functions as a neural stem cell-specific enhancer in the telencephalon. J Biol Chem, 281(19): 13374–13381

DOI PMID

131
Mori T, Tanaka K, Buffo A, Wurst W, Kühn R, Götz M (2006). Inducible gene deletion in astroglia and radial glia—a valuable tool for functional and lineage analysis. Glia, 54(1): 21–34

DOI PMID

132
Morshead C M, Reynolds B A, Craig C G, McBurney M W, Staines W A, Morassutti D, Weiss S, van der Kooy D (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron, 13(5): 1071–1082

DOI PMID

133
Mouret A, Lepousez G, Gras J, Gabellec M M, Lledo P M (2009). Turnover of newborn olfactory bulb neurons optimizes olfaction. J Neurosci, 29(39): 12302–12314

DOI PMID

134
Nakashiba T, Cushman J D, Pelkey K A, Renaudineau S, Buhl D L, McHugh T J, Rodriguez Barrera V, Chittajallu R, Iwamoto K S, McBain C J, Fanselow M S, Tonegawa S (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149(1): 188–201

DOI PMID

135
Namba T, Mochizuki H, Onodera M, Mizuno Y, Namiki H, Seki T (2005). The fate of neural progenitor cells expressing astrocytic and radial glial markers in the postnatal rat dentate gyrus. Eur J Neurosci, 22(8): 1928–1941

DOI PMID

136
Ninov N, Borius M, Stainier D Y (2012). Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development, 139(9): 1557–1567

DOI PMID

137
Nolte C, Matyash M, Pivneva T, Schipke C G, Ohlemeyer C, Hanisch U K, Kirchhoff F, Kettenmann H (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia, 33(1): 72–86

DOI PMID

138
Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R (2001). Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J Biol Chem, 276(32): 30467–30474

DOI PMID

139
Palmer T D, Takahashi J, Gage F H (1997). The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci, 8(6): 389–404

DOI PMID

140a
Pan Y W, Chan G C, Kuo C T, Storm D R, Xia Z (2012). Inhibition of adult neurogenesis by inducible and targeted deletion of ERK5 mitogen-activated protein kinase specifically in adult neurogenic regions impairs contextual fear extinction and remote fear memory.J Neurosci, 32: 6444–6455

DOI PMID

140
Pastrana E, Cheng L C, Doetsch F (2009). Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA, 106(15): 6387–6392

DOI PMID

141
Pereira A C, Huddleston D E, Brickman A M, Sosunov A A, Hen R, McKhann G M, Sloan R, Gage F H, Brown T R, Small S A (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA, 104(13): 5638–5643

DOI PMID

142
Perl A K, Wert S E, Nagy A, Lobe C G, Whitsett J A (2002). Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci USA, 99(16): 10482–10487

DOI PMID

143
Pevny L H, Sockanathan S, Placzek M, Lovell-Badge R (1998). A role for SOX1 in neural determination. Development, 125(10): 1967–1978

PMID

144
Pimeisl I M, Tanriver Y, Daza R A, Vauti F, Hevner R F, Arnold H H, Arnold S J (2013). Generation and characterization of a tamoxifen-inducible Eomes(CreER) mouse line. Genesis, 51(10): 725–733

DOI PMID

145
Platel J C, Gordon V, Heintz T, Bordey A (2009). GFAP-GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia, 57(1): 66–78

DOI PMID

146
Pollak J, Wilken M S, Ueki Y, Cox K E, Sullivan J M, Taylor R J, Levine E M, Reh T A (2013). ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors. Development, 140(12): 2619–2631

DOI PMID

147
Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger M S, Garcia-Verdugo J M, Alvarez-Buylla A (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol, 494(3): 415–434

DOI PMID

148
Raposo A A, Vasconcelos F F, Drechsel D, Marie C, Johnston C, Bithell A, Gillotin S, van den Berg D L, Ettwiller L, Flicek P, Crawford G E, Parras C M, Berninger B, Buckley N J, Guillemot F, Castro D S (2015). Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis. Cell Rep, 10(9): 1–13

149
Regan M R, Huang Y H, Kim Y S, Dykes-Hoberg M I, Jin L, Watkins A M, Bergles D E, Rothstein J D (2007). Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci, 27(25): 6607–6619

DOI PMID

150
Sahay A, Hen R (2008). Hippocampal neurogenesis and depression. Novartis Found Symp 289, 152–160; discussion 160–154, 193–155

151a
Sahay A, Scobie K N, Hill A S, O'Carroll C M, Kheirbek M A, Burghardt N S, Fenton A A, Dranovsky A, Hen R (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472: 466–470

151
Sakamoto M, Ieki N, Miyoshi G, Mochimaru D, Miyachi H, Imura T, Yamaguchi M, Fishell G, Mori K, Kageyama R, Imayoshi I (2014). Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J Neurosci, 34(17): 5788–5799

DOI PMID

152
Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301(5634): 805–809

DOI PMID

153
Saxe M D, Battaglia F, Wang J W, Malleret G, David D J, Monckton J E, Garcia A D, Sofroniew M V, Kandel E R, Santarelli L, Hen R, Drew M R (2006). Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA, 103(46): 17501–17506

DOI PMID

154
Schmid R S, Yokota Y, Anton E S (2006). Generation and characterization of brain lipid-binding protein promoter-based transgenic mouse models for the study of radial glia. Glia, 53(4): 345–351

DOI PMID

155
Seri B, García-Verdugo J M, Collado-Morente L, McEwen B S, Alvarez-Buylla A (2004). Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol, 478(4): 359–378

DOI PMID

156
Seri B, García-Verdugo J M, McEwen B S, Alvarez-Buylla A (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci, 21(18): 7153–7160

PMID

157
Shen Q, Wang Y, Kokovay E, Lin G, Chuang S M, Goderie S K, Roysam B, Temple S (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell, 3(3): 289–300

DOI PMID

158
Shibata T, Watanabe M, Tanaka K, Wada K, Inoue Y (1996). Dynamic changes in expression of glutamate transporter mRNAs in developing brain. Neuroreport, 7(3): 705–709

DOI PMID

159
Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997). Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci, 17(23): 9212–9219

PMID

160
Shimojo H, Ohtsuka T, Kageyama R (2008). Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron, 58(1): 52–64

DOI PMID

161
Shin J, Berg D A, Zhu Y, Shin J Y, Song J, Bonaguidi M A, Enikolopov G, Nauen D W, Christian K M, Ming G L, Song H (2015). Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell, 17(3): 360–372

DOI PMID

162
Shors T J, Townsend D A, Zhao M, Kozorovitskiy Y, Gould E (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12(5): 578–584

DOI PMID

163
Sierra A, Encinas J M, Maletic-Savatic M (2011). Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci, 5: 47

DOI PMID

164
Slezak M, Göritz C, Niemiec A, Frisén J, Chambon P, Metzger D, Pfrieger F W (2007). Transgenic mice for conditional gene manipulation in astroglial cells. Glia, 55(15): 1565–1576

DOI PMID

164a
Snyder J S, Soumier A, Brewer M, Pickel J, Cameron H A (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 476: 458–461

165
Soriano P (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet, 21(1): 70–71

DOI PMID

166
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227

DOI PMID

167
Suh H, Consiglio A, Ray J, Sawai T, D’Amour K A, Gage F H (2007). In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell, 1(5): 515–528

DOI PMID

168
Sultan S, Gebara E, Toni N (2013). Doxycycline increases neurogenesis and reduces microglia in the adult hippocampus. Front Neurosci, 7: 131

PMID

169
Sun M Y, Yetman M J, Lee T C, Chen Y, Jankowsky J L (2014). Specificity and efficiency of reporter expression in adult neural progenitors vary substantially among nestin-CreER(T2) lines. J Comp Neurol, 522(5): 1191–1208

DOI PMID

170a
Surget A, Tant A, Leonardo E D, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C (2011). Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry, 16: 1177–1188

PMID

170
Sutherland M L, Delaney T A, Noebels J L (1996). Glutamate transporter mRNA expression in proliferative zones of the developing and adult murine CNS. J Neurosci, 16(7): 2191–2207

PMID

171
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676

DOI PMID

172
Takeda N, Jain R, Leboeuf M R, Padmanabhan A, Wang Q, Li L, Lu M M, Millar S E, Epstein J A (2013). Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development, 140(8): 1655–1664

DOI PMID

173
Takeda N, Jain R, LeBoeuf M R, Wang Q, Lu M M, Epstein J A (2011). Interconversion between intestinal stem cell populations in distinct niches. Science, 334(6061): 1420–1424

DOI PMID

174
Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo J M, Doetsch F (2008). A specialized vascular niche for adult neural stem cells. Cell Stem Cell, 3(3): 279–288

DOI PMID

175
Tseng Y Y, Gruzdeva N, Li A, Chuang J Z, Sung C H (2010). Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain. J Comp Neurol, 518(16): 3327–3342

DOI PMID

176
Uwanogho D, Rex M, Cartwright E J, Pearl G, Healy C, Scotting P J, Sharpe P T (1995). Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev, 49(1-2): 23–36

DOI PMID

177
Venere M, Han Y G, Bell R, Song J S, Alvarez-Buylla A, Blelloch R (2012). Sox1 marks an activated neural stem/progenitor cell in the hippocampus. Development, 139(21): 3938–3949

DOI PMID

178
Vierbuchen T, Ostermeier A, Pang Z P, Kokubu Y, Südhof T C, Wernig M (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284): 1035–1041

DOI PMID

179
Walker T L, Overall R W, Vogler S, Sykes A M, Ruhwald S, Lasse D, Ichwan M, Fabel K, Kempermann G (2016). Lysophosphatidic acid receptor is a functional marker of adult hippocampal precursor cells. Stem Cell Rep, 6(4): 552–565

DOI PMID

180
Walker T L, Yasuda T, Adams D J, Bartlett P F (2007). The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronal-lineage cells. J Neurosci, 27(14): 3734–3742

DOI PMID

181
Wang X, Qiu R, Tsark W, Lu Q (2007). Rapid promoter analysis in developing mouse brain and genetic labeling of young neurons by doublecortin-DsRed-express. J Neurosci Res, 85(16): 3567–3573

DOI PMID

182
Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov K V, Tarasova Y, Wersto R P, Boheler K R, Wobus A M (2004). Nestin expression—a property of multi-lineage progenitor cells? Cell Mol Life Sci, 61(19-20): 2510–2522

DOI PMID

183
Williams S M, Sullivan R K, Scott H L, Finkelstein D I, Colditz P B, Lingwood B E, Dodd P R, Pow D V (2005). Glial glutamate transporter expression patterns in brains from multiple mammalian species. Glia, 49(4): 520–541

DOI PMID

183a
Wojtowicz J M, Askew M L, Winocur G (2008). The effects of running and of inhibiting adult neurogenesis on learning and memory in rats. Eur J Neurosci, 27: 1494–1502

184
Yamaguchi M, Saito H, Suzuki M, Mori K (2000). Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport, 11(9): 1991–1996

DOI PMID

185
Yang S M, Alvarez D D, Schinder A F (2015). Reliable Genetic Labeling of Adult-Born Dentate Granule Cells Using Ascl1 CreERT2 and Glast CreERT2 Murine Lines. J Neurosci, 35(46): 15379–15390

DOI PMID

186
Yaworsky P J, Kappen C (1999). Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene. Dev Biol, 205(2): 309–321

DOI PMID

187
Yu T S, Dandekar M, Monteggia L M, Parada L F, Kernie S G (2005). Temporally regulated expression of Cre recombinase in neural stem cells. Genesis, 41(4): 147–153

DOI PMID

188
Zappone M V, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi A L, Lovell-Badge R, Ottolenghi S, Nicolis S K (2000). Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development, 127(11): 2367–2382

PMID

189
Zecevic N (2004). Specific characteristic of radial glia in the human fetal telencephalon. Glia, 48(1): 27–35

DOI PMID

190
Zhang C L, Zou Y, He W, Gage F H, Evans R M (2008). A role for adult TLX-positive neural stem cells in learning and behaviour. Nature, 451(7181): 1004–1007

DOI PMID

191
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660

DOI PMID

192
Zhuo L, Sun B, Zhang C L, Fine A, Chiu S Y, Messing A (1997). Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol, 187(1): 36–42

DOI PMID

193
Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B, Mann J, Vassileva G, McMahon A (1994). Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron, 12(1): 11–24

DOI PMID

Outlines

/