Transgenic mouse models for studying adult neurogenesis

Fatih Semerci, Mirjana Maletic-Savatic

PDF(1120 KB)
PDF(1120 KB)
Front. Biol. ›› 2016, Vol. 11 ›› Issue (3) : 151-167. DOI: 10.1007/s11515-016-1405-3
REVIEW
REVIEW

Transgenic mouse models for studying adult neurogenesis

Author information +
History +

Abstract

The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has garnered significant interest because targeting it could be a novel potential therapeutic strategy for these disorders. However, if we are to use neurogenesis to halt or reverse hippocampal-related pathology, we need to understand better the core molecular machinery that governs NSC and their progeny. In this review, we summarize a wide variety of mouse models used in adult neurogenesis field, present their advantages and disadvantages based on specificity and efficiency of labeling of different cell types, and review their contribution to our understanding of the biology and the heterogeneity of different cell types found in adult neurogenic niches.

Keywords

adult neurogenesis / mouse models / neural stem cells / neuroprogenitors / lineage tracing

Cite this article

Download citation ▾
Fatih Semerci, Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis. Front. Biol., 2016, 11(3): 151‒167 https://doi.org/10.1007/s11515-016-1405-3

References

[1a]
Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, Gómez-Nicola D, Domercq M, Pérez-Samartín A, Sánchez-Zafra V, Paris I, Valero J, Savage JC, Hui CW, Tremblay MÈ, Deudero JJ, Brewster AL, Anderson AE, Zaldumbide L, Galbarriatu L, Marinas A, Vivanco M D, Matute C, Maletic-Savatic M, Encinas JM, Sierra A (2016). Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling. PLoS Biol, 14(5): e1002466
CrossRef Pubmed Google scholar
[1]
Abraham A B, Bronstein R, Chen E I, Koller A, Ronfani L, Maletic-Savatic M, Tsirka S E (2013a). Members of the high mobility group B protein family are dynamically expressed in embryonic neural stem cells. Proteome Sci, 11(1): 18
CrossRef Pubmed Google scholar
[2]
Abraham A B, Bronstein R, Reddy A S, Maletic-Savatic M, Aguirre A, Tsirka S E (2013b). Aberrant neural stem cell proliferation and increased adult neurogenesis in mice lacking chromatin protein HMGB2. PLoS ONE, 8(12): e84838
CrossRef Pubmed Google scholar
[3]
Ahn S, Joyner A L (2004). Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell, 118(4): 505–516
CrossRef Pubmed Google scholar
[4]
Ahn S, Joyner A L (2005). In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 437(7060): 894–897
CrossRef Pubmed Google scholar
[5]
Aimone J B, Deng W, Gage F H (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70(4): 589–596
CrossRef Pubmed Google scholar
[6]
Akazawa C, Sasai Y, Nakanishi S, Kageyama R (1992). Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J Biol Chem, 267(30): 21879–21885
Pubmed
[7]
Allen G I, Maletić-Savatić M (2011). Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics, 27(21): 3029–3035
CrossRef Pubmed Google scholar
[8]
Allen G I, Peterson C, Vannucci M, Maletić-Savatić M (2013). Regularized partial least squares with an application to NMR spectroscopy. Stat Anal Data Min, 6(4): 302–314
CrossRef Pubmed Google scholar
[9]
Altman J (1962). Are new neurons formed in the brains of adult mammals? Science, 135(3509): 1127–1128
CrossRef Pubmed Google scholar
[10]
Alunni A, Krecsmarik M, Bosco A, Galant S, Pan L, Moens C B, Bally-Cuif L (2013). Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. Development, 140(16): 3335–3347
CrossRef Pubmed Google scholar
[11]
Alvarez-Buylla A, Kohwi M, Nguyen T M, Merkle F T (2008). The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb Symp Quant Biol, 73(0): 357–365
CrossRef Pubmed Google scholar
[12]
Andersson E R, Sandberg R, Lendahl U (2011). Notch signaling: simplicity in design, versatility in function. Development, 138(17): 3593–3612
CrossRef Pubmed Google scholar
[13]
Anthony T E, Klein C, Fishell G, Heintz N (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron, 41(6): 881–890
CrossRef Pubmed Google scholar
[14]
Arnold J M, Choi W T, Sreekumar A, Maletić-Savatić M (2015). Analytical strategies for studying stem cell metabolism. Front Biol (Beijing), 10(2): 141–153
CrossRef Pubmed Google scholar
[15]
Arnold K, Sarkar A, Yram M A, Polo J M, Bronson R, Sengupta S, Seandel M, Geijsen N, Hochedlinger K (2011). Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell, 9(4): 317–329
CrossRef Pubmed Google scholar
[16]
Aubert J, Stavridis M P, Tweedie S, O’Reilly M, Vierlinger K, Li M, Ghazal P, Pratt T, Mason J O, Roy D, Smith A (2003). Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc Natl Acad Sci USA, 100(Suppl 1): 11836–11841
CrossRef Pubmed Google scholar
[17]
Balordi F, Fishell G (2007). Mosaic removal of hedgehog signaling in the adult SVZ reveals that the residual wild-type stem cells have a limited capacity for self-renewal. J Neurosci, 27(52): 14248–14259
CrossRef Pubmed Google scholar
[18]
Balthasar N, Coppari R, McMinn J, Liu S M, Lee C E, Tang V, Kenny C D, McGovern R A, Chua S C Jr, Elmquist J K, Lowell B B (2004). Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron, 42(6): 983–991
CrossRef Pubmed Google scholar
[19]
Basak O, Giachino C, Fiorini E, Macdonald H R, Taylor V (2012). Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent in their active but not quiescent state. J Neurosci, 32(16): 5654–5666
CrossRef Pubmed Google scholar
[20]
Basak O, Taylor V (2007). Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur J Neurosci, 25(4): 1006–1022
CrossRef Pubmed Google scholar
[21]
Beckervordersandforth R, Deshpande A, Schäffner I, Huttner H B, Lepier A, Lie D C, Götz M (2014). In vivo targeting of adult neural stem cells in the dentate gyrus by a split-cre approach. Stem Cell Rep, 2(2): 153–162
CrossRef Pubmed Google scholar
[22]
Beech R D, Cleary M A, Treloar H B, Eisch A J, Harrist A V, Zhong W, Greer C A, Duman R S, Picciotto M R (2004). Nestin promoter/enhancer directs transgene expression to precursors of adult generated periglomerular neurons. J Comp Neurol, 475(1): 128–141
CrossRef Pubmed Google scholar
[23]
Berg D A, Yoon K J, Will B, Xiao A Y, Kim N S, Christian K M, Song H, Ming G (2015). Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis. Frontiers in Biology, 10(3): 262–271
CrossRef Google scholar
[24]
Berninger B, Costa M R, Koch U, Schroeder T, Sutor B, Grothe B, Götz M (2007). Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci, 27(32): 8654–8664
CrossRef Pubmed Google scholar
[25]
Bertrand N, Castro D S, Guillemot F (2002). Proneural genes and the specification of neural cell types. Nat Rev Neurosci, 3(7): 517–530
CrossRef Pubmed Google scholar
[26]
Betz U A, Vosshenrich C A, Rajewsky K, Müller W (1996). Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr Biol, 6(10): 1307–1316
CrossRef Pubmed Google scholar
[27]
Bonaguidi M A, Song J, Ming G L, Song H (2012). A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol, 22(5): 754–761
CrossRef Pubmed Google scholar
[28]
Bonaguidi M A, Wheeler M A, Shapiro J S, Stadel R P, Sun G J, Ming G L, Song H (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 145(7): 1142–1155
CrossRef Pubmed Google scholar
[29]
Bond A M, Ming G L, Song H (2015). Adult mammalian neural stem cells and neurogenesis: Five Decades Later. Cell Stem Cell, 17(4): 385–395
CrossRef Pubmed Google scholar
[30]
Bracko O, Singer T, Aigner S, Knobloch M, Winner B, Ray J, Clemenson G D Jr, Suh H, Couillard-Despres S, Aigner L, Gage F H, Jessberger S (2012). Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J Neurosci, 32(10): 3376–3387
CrossRef Pubmed Google scholar
[31]
Breunig J J, Silbereis J, Vaccarino F M, Sestan N, Rakic P (2007). Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci USA, 104(51): 20558–20563
CrossRef Pubmed Google scholar
[32]
Brill M S, Ninkovic J, Winpenny E, Hodge R D, Ozen I, Yang R, Lepier A, Gascón S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner R F, Raineteau O, Götz M (2009). Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci, 12(12): 1524–1533
CrossRef Pubmed Google scholar
[33]
Cameron H A, Woolley C S, McEwen B S, Gould E (1993). Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience, 56(2): 337–344
CrossRef Pubmed Google scholar
[34]
Casper K B, McCarthy K D (2006). GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci, 31(4): 676–684
CrossRef Pubmed Google scholar
[35]
Chapouton P, Skupien P, Hesl B, Coolen M, Moore J C, Madelaine R, Kremmer E, Faus-Kessler T, Blader P, Lawson N D, Bally-Cuif L (2010). Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J Neurosci, 30(23): 7961–7974
CrossRef Pubmed Google scholar
[36]
Chen J, Kelz M B, Zeng G, Sakai N, Steffen C, Shockett P E, Picciotto M R, Duman R S, Nestler E J (1998). Transgenic animals with inducible, targeted gene expression in brain. Mol Pharmacol, 54(3): 495–503
Pubmed
[37]
Chojnacki A K, Mak G K, Weiss S (2009). Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci, 10(2): 153–163
CrossRef Pubmed Google scholar
[38]
Chuang J Z, Milner T A, Sung C H (2001). Subunit heterogeneity of cytoplasmic dynein: Differential expression of 14 kDa dynein light chains in rat hippocampus. J Neurosci, 21(15): 5501–5512
Pubmed
[39]
Clelland C D, Choi M, Romberg C, Clemenson G D Jr, Fragniere A, Tyers P, Jessberger S, Saksida L M, Barker R A, Gage F H, Bussey T J (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937): 210–213
CrossRef Pubmed Google scholar
[40]
Codega P, Silva-Vargas V, Paul A, Maldonado-Soto A R, Deleo A M, Pastrana E, Doetsch F (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 82(3): 545–559
CrossRef Pubmed Google scholar
[41]
Collignon J (1992). Study of a new family of genes related to the mammalian testis determining gene (Phd Thesis: CNAA London).
[42]
Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L (2006). Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci, 24(6): 1535–1545
CrossRef Pubmed Google scholar
[43]
Cowley M A, Smart J L, Rubinstein M, Cerdán M G, Diano S, Horvath T L, Cone R D, Low M J (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411(6836): 480–484
CrossRef Pubmed Google scholar
[44]
D’Amour K A, Gage F H (2003). Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc Natl Acad Sci USA, 100(Suppl 1): 11866–11872
CrossRef Pubmed Google scholar
[45]
David D J, Wang J, Samuels B A, Rainer Q, David I, Gardier A M, Hen R (2010). Implications of the functional integration of adult-born hippocampal neurons in anxiety-depression disorders. Neuroscientist, 16(5): 578–591
CrossRef Pubmed Google scholar
[46]
Day K, Shefer G, Richardson J B, Enikolopov G, Yablonka-Reuveni Z (2007). Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol, 304(1): 246–259
CrossRef Pubmed Google scholar
[47]
DeCarolis N A, Mechanic M, Petrik D, Carlton A, Ables J L, Malhotra S, Bachoo R, Götz M, Lagace D C, Eisch A J (2013). In vivo contribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis. Hippocampus, 23(8): 708–719
CrossRef Pubmed Google scholar
[48]
Dedesma C, Chuang J Z, Alfinito P D, Sung C H (2006). Dynein light chain Tctex-1 identifies neural progenitors in adult brain. J Comp Neurol, 496(6): 773–786
CrossRef Pubmed Google scholar
[49]
Deng W, Saxe M D, Gallina I S, Gage F H (2009). Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci, 29(43): 13532–13542
CrossRef Pubmed Google scholar
[50]
Djuric P M, Wagshul M E, Henn F B,  Enikolopov G, Maletic-Savatic M ( (2008). Singular Value Decomposition algorithm for detection of neural progenitor cells in the live human brain. Science, 321: 640
CrossRef Pubmed Google scholar
[51]
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061
Pubmed
[52]
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1999). Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA, 96(20): 11619–11624
CrossRef Pubmed Google scholar
[53]
Dranovsky A, Picchini A M, Moadel T, Sisti A C, Yamada A, Kimura S, Leonardo E D, Hen R (2011). Experience dictates stem cell fate in the adult hippocampus. Neuron, 70(5): 908–923
CrossRef Pubmed Google scholar
[54]
Dupret D, Revest J M, Koehl M, Ichas F, De Giorgi F, Costet P, Abrous D N, Piazza P V (2008). Spatial relational memory requires hippocampal adult neurogenesis. PLoS One, 3: e1959
[55]
Ellis P, Fagan B M, Magness S T, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci, 26(2-4): 148–165
CrossRef Pubmed Google scholar
[56]
Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579
CrossRef Pubmed Google scholar
[57]
Encinas J M, Vaahtokari A, Enikolopov G (2006). Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA, 103(21): 8233–8238
CrossRef Pubmed Google scholar
[58]
Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247–251
CrossRef Pubmed Google scholar
[59]
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
CrossRef Pubmed Google scholar
[60]
Farioli-Vecchioli S, Saraulli D, Costanzi M, Pacioni S, Cinà I, Aceti M, Micheli L, Bacci A, Cestari V, Tirone F (2008). The timing of differentiation of adult hippocampal neurons is crucial for spatial memory. PLoS Biol, 6(10): e246
CrossRef Pubmed Google scholar
[61]
Farnsworth D R, Bayraktar O A, Doe C Q (2015). Aging Neural Progenitors Lose Competence to Respond to Mitogenic Notch Signaling. Curr Biol, 25(23): 3058–3068
CrossRef Pubmed Google scholar
[62]
Favaro R, Valotta M, Ferri A L, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis S K (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci, 12(10): 1248–1256
CrossRef Pubmed Google scholar
[63]
Ferri A L, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi P P, Sala M, DeBiasi S, Nicolis S K (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131(15): 3805–3819
CrossRef Pubmed Google scholar
[64]
Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang L P, Yamaguchi M, Kettenmann H, Kempermann G (2003). Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci, 23(3): 373–382
CrossRef Pubmed Google scholar
[65]
Gama-Norton L, Ferrando E, Ruiz-Herguido C, Liu Z, Guiu J, Islam A B, Lee S U, Yan M, Guidos C J, López-Bigas N, Maeda T, Espinosa L, Kopan R, Bigas A (2015). Notch signal strength controls cell fate in the haemogenic endothelium. Nat Commun, 6: 8510
CrossRef Pubmed Google scholar
[66]
Ganat Y M, Silbereis J, Cave C, Ngu H, Anderson G M, Ohkubo Y, Ment L R, Vaccarino F M (2006). Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci, 26(33): 8609–8621
CrossRef Pubmed Google scholar
[67]
Garcia A D, Doan N B, Imura T, Bush T G, Sofroniew M V (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci, 7(11): 1233–1241
CrossRef Pubmed Google scholar
[68]
Gheusi G, Cremer H, McLean H, Chazal G, Vincent J D, Lledo P M (2000). Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci USA, 97(4): 1823–1828
CrossRef Pubmed Google scholar
[69]
Giachino C, Basak O, Lugert S, Knuckles P, Obernier K, Fiorelli R, Frank S, Raineteau O, Alvarez-Buylla A, Taylor V (2014). Molecular diversity subdivides the adult forebrain neural stem cell population. Stem Cells, 32(1): 70–84
CrossRef Pubmed Google scholar
[70]
Giachino C, Taylor V (2014). Notching up neural stem cell homogeneity in homeostasis and disease. Front Neurosci, 8: 32
CrossRef Pubmed Google scholar
[71]
Glowatzki E, Cheng N, Hiel H, Yi E, Tanaka K, Ellis-Davies G C, Rothstein J D, Bergles D E (2006). The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea. J Neurosci, 26(29): 7659–7664
CrossRef Pubmed Google scholar
[72]
Gong S, Zheng C, Doughty M L, Losos K, Didkovsky N, Schambra U B, Nowak N J, Joyner A, Leblanc G, Hatten M E, Heintz N (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature, 425(6961): 917–925
CrossRef Pubmed Google scholar
[73]
Hartfuss E, Galli R, Heins N, Götz M (2001). Characterization of CNS precursor subtypes and radial glia. Dev Biol, 229(1): 15–30
CrossRef Pubmed Google scholar
[74]
Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004). Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development, 131(22): 5539–5550
CrossRef Pubmed Google scholar
[75]
Hayashi A, Koob J W, Liu D Z, Tong A Y, Hunter D A, Parsadanian A, Mackinnon S E, Myckatyn T M (2007). A double-transgenic mouse used to track migrating Schwann cells and regenerating axons following engraftment of injured nerves. Exp Neurol, 207(1): 128–138
CrossRef Pubmed Google scholar
[76]
Hegedus B, Dasgupta B, Shin J E, Emnett R J, Hart-Mahon E K, Elghazi L, Bernal-Mizrachi E, Gutmann D H (2007). Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell, 1(4): 443–457
CrossRef Pubmed Google scholar
[77]
Heine V M, Zareno J, Maslam S, Joëls M, Lucassen P J (2005). Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci, 21(5): 1304–1314
CrossRef Pubmed Google scholar
[78]
Hirrlinger P G, Scheller A, Braun C, Quintela-Schneider M, Fuss B, Hirrlinger J, Kirchhoff F (2005). Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Mol Cell Neurosci, 30(3): 291–303
CrossRef Pubmed Google scholar
[79]
Hockfield S, McKay R D (1985). Identification of major cell classes in the developing mammalian nervous system. J Neurosci, 5(12): 3310–3328
Pubmed
[80]
Hodge R D, Kowalczyk T D, Wolf S A, Encinas J M, Rippey C, Enikolopov G, Kempermann G, Hevner R F (2008). Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci, 28(14): 3707–3717
CrossRef Pubmed Google scholar
[81]
Hunt R F, Dinday M T, Hindle-Katel W, Baraban S C (2012). LIS1 deficiency promotes dysfunctional synaptic integration of granule cells generated in the developing and adult dentate gyrus. J Neurosci, 32(37): 12862–12875
CrossRef Pubmed Google scholar
[82]
Imayoshi I, Ohtsuka T, Metzger D, Chambon P, Kageyama R (2006). Temporal regulation of Cre recombinase activity in neural stem cells. Genesis, 44(5): 233–238
CrossRef Pubmed Google scholar
[83]
Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008). Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci, 11(10): 1153–1161
CrossRef Pubmed Google scholar
[84]
Jacobs B L, van Praag H, Gage F H (2000). Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry, 5(3): 262–269
CrossRef Pubmed Google scholar
[85]
Jessberger S, Toni N, Clemenson G D Jr, Ray J, Gage F H (2008). Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci, 11(8): 888–893
CrossRef Pubmed Google scholar
[86]
Joëls M, Karst H, Krugers H J, Lucassen P J (2007). Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol, 28(2-3): 72–96
CrossRef Pubmed Google scholar
[87]
Johansson C B, Lothian C, Molin M, Okano H, Lendahl U (2002). Nestin enhancer requirements for expression in normal and injured adult CNS. J Neurosci Res, 69(6): 784–794
CrossRef Pubmed Google scholar
[88]
Josephson R, Müller T, Pickel J, Okabe S, Reynolds K, Turner P A, Zimmer A, McKay R D (1998). POU transcription factors control expression of CNS stem cell-specific genes. Development, 125(16): 3087–3100
Pubmed
[89]
Jourdon A, Gresset A, Spassky N, Charnay P, Topilko P, Santos R (2015). Prss56, a novel marker of adult neurogenesis in the mouse brain. Brain Struct Funct, doi: 10.1007/s00429-015-1171-z
[90]
Jump D B, Oppenheimer J H (1985). High basal expression and 3,5,3′-triiodothyronine regulation of messenger ribonucleic acid S14 in lipogenic tissues. Endocrinology, 117(6): 2259–2266
CrossRef Pubmed Google scholar
[91]
Kageyama R, Ohtsuka T (1999). The Notch-Hes pathway in mammalian neural development. Cell Res, 9(3): 179–188
CrossRef Pubmed Google scholar
[92]
Kamachi Y, Kondoh H (2013). Sox proteins: regulators of cell fate specification and differentiation. Development, 140(20): 4129–4144
CrossRef Pubmed Google scholar
[93]
Kang W, Hébert J M (2012). A Sox2 BAC transgenic approach for targeting adult neural stem cells. PLoS ONE, 7(11): e49038
CrossRef Pubmed Google scholar
[94]
Karow M, Sánchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascón S, Khan M A, Lie D C, Dellavalle A, Cossu G, Goldbrunner R, Götz M, Berninger B (2012). Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell, 11(4): 471–476
CrossRef Pubmed Google scholar
[95]
Kawaguchi A, Miyata T, Sawamoto K, Takashita N, Murayama A, Akamatsu W, Ogawa M, Okabe M, Tano Y, Goldman S A, Okano H (2001). Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci, 17(2): 259–273
CrossRef Pubmed Google scholar
[96]
Kim E J, Ables J L, Dickel L K, Eisch A J, Johnson J E (2011). Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS ONE, 6(3): e18472
CrossRef Pubmed Google scholar
[97]
Kim E J, Leung C T, Reed R R, Johnson J E (2007). In vivo analysis of Ascl1 defined progenitors reveals distinct developmental dynamics during adult neurogenesis and gliogenesis. J Neurosci, 27(47): 12764–12774
CrossRef Pubmed Google scholar
[98]
Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H, Sekiguchi M, Sugiyama H, Inokuchi K (2009). Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell, 139(4): 814–827
CrossRef Pubmed Google scholar
[99]
Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230
CrossRef Pubmed Google scholar
[100]
Knobloch M, von Schoultz C, Zurkirchen L, Braun S M, Vidmar M, Jessberger S (2014). SPOT14-positive neural stem/progenitor cells in the hippocampus respond dynamically to neurogenic regulators. Stem Cell Rep, 3(5): 735–742
CrossRef Pubmed Google scholar
[101]
Kuo C T, Mirzadeh Z, Soriano-Navarro M, Rasin M, Wang D, Shen J, Sestan N, Garcia-Verdugo J, Alvarez-Buylla A, Jan L Y, Jan Y N (2006). Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell, 127(6): 1253–1264
CrossRef Pubmed Google scholar
[102]
Kwon G S, Hadjantonakis A K (2007). Eomes: GFP-a tool for live imaging cells of the trophoblast, primitive streak, and telencephalon in the mouse embryo. Genesis, 45(4): 208–217
CrossRef Pubmed Google scholar
[103]
Lagace D C, Whitman M C, Noonan M A, Ables J L, DeCarolis N A, Arguello A A, Donovan M H, Fischer S J, Farnbauch L A, Beech R D, DiLeone R J, Greer C A, Mandyam C D, Eisch A J (2007). Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J Neurosci, 27(46): 12623–12629
CrossRef Pubmed Google scholar
[104]
Lai K, Kaspar B K, Gage F H, Schaffer D V (2003). Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci, 6(1): 21–27
CrossRef Pubmed Google scholar
[105]
Lendahl U, Zimmerman L B, McKay R D (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4): 585–595
CrossRef Pubmed Google scholar
[106]
Leung C T, Coulombe P A, Reed R R (2007). Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci, 10(6): 720–726
CrossRef Pubmed Google scholar
[107]
Li D, Takeda N, Jain R, Manderfield L J, Liu F, Li L, Anderson S A, Epstein J A (2015). Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Res (Amst), 15(3): 522–529
CrossRef Pubmed Google scholar
[108]
Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman R M (2003). Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA, 100(17): 9958–9961
CrossRef Pubmed Google scholar
[109]
Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang C C, Kain S R (1998). Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem, 273(52): 34970–34975
CrossRef Pubmed Google scholar
[110]
Lobo M V, Arenas M I, Alonso F J, Gomez G, Bazán E, Paíno C L, Fernández E, Fraile B, Paniagua R, Moyano A, Caso E (2004). Nestin, a neuroectodermal stem cell marker molecule, is expressed in Leydig cells of the human testis and in some specific cell types from human testicular tumours. Cell Tissue Res, 316(3): 369–376
CrossRef Pubmed Google scholar
[111]
Lois C, Alvarez-Buylla A (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264(5162): 1145–1148
CrossRef Pubmed Google scholar
[112]
Lothian C, Prakash N, Lendahl U, Wahlström G M (1999). Identification of both general and region-specific embryonic CNS enhancer elements in the nestin promoter. Exp Cell Res, 248(2): 509–519
CrossRef Pubmed Google scholar
[113]
Lucassen P J, Oomen C A, Naninck E F, Fitzsimons C P, van Dam A M, Czeh B, Korosi A (2015). Regulation of Adult Neurogenesis and Plasticity by (Early) Stress, Glucocorticoids, and Inflammation. Cold Spring Harb Perspect Biol, 7(9): a021303
CrossRef Pubmed Google scholar
[114]
Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445–456
CrossRef Pubmed Google scholar
[115]
Lugert S, Vogt M, Tchorz J S, Müller M, Giachino C, Taylor V (2012). Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1(high) intermediate progenitors. Nat Commun, 3: 670
CrossRef Pubmed Google scholar
[116]
Luskin M B (1993). Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 11(1): 173–189
CrossRef Pubmed Google scholar
[117]
Machold R, Hayashi S, Rutlin M, Muzumdar M D, Nery S, Corbin J G, Gritli-Linde A, Dellovade T, Porter J A, Rubin L L, Dudek H, McMahon A P, Fishell G (2003). Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron, 39(6): 937–950
CrossRef Pubmed Google scholar
[118a]
Mainen Z F, Maletic-Savatic M, Shi S H, Hayashi Y, Malinow R, Svoboda K (1999). Two-photon imaging in living brain slices. Methods, 18: 231–239
CrossRef Pubmed Google scholar
[118]
Mak G K, Enwere E K, Gregg C, Pakarainen T, Poutanen M, Huhtaniemi I, Weiss S (2007). Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat Neurosci, 10(8): 1003–1011
CrossRef Pubmed Google scholar
[119]
Malberg J E, Eisch A J, Nestler E J, Duman R S (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci, 20(24): 9104–9110
Pubmed
[120]
Maletić-Savatić M, Vingara L K, Manganas L N, Li Y, Zhang S, Sierra A, Hazel R, Smith D, Wagshul M E, Henn F, Krupp L, Enikolopov G, Benveniste H, Djurić P M, Pelczer I (2008). Metabolomics of neural progenitor cells: a novel approach to biomarker discovery. Cold Spring Harb Symp Quant Biol, 73(0): 389–401
CrossRef Pubmed Google scholar
[121]
Manganas L N, Maletic-Savatic M (2005). Stem cell therapy for central nervous system demyelinating disease. Curr Neurol Neurosci Rep, 5(3): 225–231
CrossRef Pubmed Google scholar
[122]
Manganas L N, Zhang X, Li Y, Hazel R D, Smith S D, Wagshul M E, Henn F, Benveniste H, Djuric P M, Enikolopov G, Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852): 980–985
CrossRef Pubmed Google scholar
[123]
Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A (2000). Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev, 14(8): 994–1004
Pubmed
[124]
Mayer E J, Hughes E H, Carter D A, Dick A D (2003). Nestin positive cells in adult human retina and in epiretinal membranes. Br J Ophthalmol, 87(9): 1154–1158
CrossRef Pubmed Google scholar
[125]
McConnell J, Petrie L, Stennard F, Ryan K, Nichols J (2005). Eomesodermin is expressed in mouse oocytes and pre-implantation embryos. Mol Reprod Dev, 71(4): 399–404
CrossRef Pubmed Google scholar
[126]
McHugh T J, Jones M W, Quinn J J, Balthasar N, Coppari R, Elmquist J K, Lowell B B, Fanselow M S, Wilson M A, Tonegawa S (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317(5834): 94–99
CrossRef Pubmed Google scholar
[127]
Mignone J L, Kukekov V, Chiang A S, Steindler D, Enikolopov G (2004). Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol, 469(3): 311–324
CrossRef Pubmed Google scholar
[128]
Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702
CrossRef Pubmed Google scholar
[129]
Mitsuhashi T, Aoki Y, Eksioglu Y Z, Takahashi T, Bhide P G, Reeves S A, Caviness V S Jr (2001). Overexpression of p27Kip1 lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells. Proc Natl Acad Sci USA, 98(11): 6435–6440
CrossRef Pubmed Google scholar
[130]
Miyagi S, Nishimoto M, Saito T, Ninomiya M, Sawamoto K, Okano H, Muramatsu M, Oguro H, Iwama A, Okuda A (2006). The Sox2 regulatory region 2 functions as a neural stem cell-specific enhancer in the telencephalon. J Biol Chem, 281(19): 13374–13381
CrossRef Pubmed Google scholar
[131]
Mori T, Tanaka K, Buffo A, Wurst W, Kühn R, Götz M (2006). Inducible gene deletion in astroglia and radial glia—a valuable tool for functional and lineage analysis. Glia, 54(1): 21–34
CrossRef Pubmed Google scholar
[132]
Morshead C M, Reynolds B A, Craig C G, McBurney M W, Staines W A, Morassutti D, Weiss S, van der Kooy D (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron, 13(5): 1071–1082
CrossRef Pubmed Google scholar
[133]
Mouret A, Lepousez G, Gras J, Gabellec M M, Lledo P M (2009). Turnover of newborn olfactory bulb neurons optimizes olfaction. J Neurosci, 29(39): 12302–12314
CrossRef Pubmed Google scholar
[134]
Nakashiba T, Cushman J D, Pelkey K A, Renaudineau S, Buhl D L, McHugh T J, Rodriguez Barrera V, Chittajallu R, Iwamoto K S, McBain C J, Fanselow M S, Tonegawa S (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149(1): 188–201
CrossRef Pubmed Google scholar
[135]
Namba T, Mochizuki H, Onodera M, Mizuno Y, Namiki H, Seki T (2005). The fate of neural progenitor cells expressing astrocytic and radial glial markers in the postnatal rat dentate gyrus. Eur J Neurosci, 22(8): 1928–1941
CrossRef Pubmed Google scholar
[136]
Ninov N, Borius M, Stainier D Y (2012). Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development, 139(9): 1557–1567
CrossRef Pubmed Google scholar
[137]
Nolte C, Matyash M, Pivneva T, Schipke C G, Ohlemeyer C, Hanisch U K, Kirchhoff F, Kettenmann H (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia, 33(1): 72–86
CrossRef Pubmed Google scholar
[138]
Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R (2001). Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J Biol Chem, 276(32): 30467–30474
CrossRef Pubmed Google scholar
[139]
Palmer T D, Takahashi J, Gage F H (1997). The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci, 8(6): 389–404
CrossRef Pubmed Google scholar
[140a]
Pan Y W, Chan G C, Kuo C T, Storm D R, Xia Z (2012). Inhibition of adult neurogenesis by inducible and targeted deletion of ERK5 mitogen-activated protein kinase specifically in adult neurogenic regions impairs contextual fear extinction and remote fear memory.J Neurosci, 32: 6444–6455
CrossRef Pubmed Google scholar
[140]
Pastrana E, Cheng L C, Doetsch F (2009). Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA, 106(15): 6387–6392
CrossRef Pubmed Google scholar
[141]
Pereira A C, Huddleston D E, Brickman A M, Sosunov A A, Hen R, McKhann G M, Sloan R, Gage F H, Brown T R, Small S A (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA, 104(13): 5638–5643
CrossRef Pubmed Google scholar
[142]
Perl A K, Wert S E, Nagy A, Lobe C G, Whitsett J A (2002). Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci USA, 99(16): 10482–10487
CrossRef Pubmed Google scholar
[143]
Pevny L H, Sockanathan S, Placzek M, Lovell-Badge R (1998). A role for SOX1 in neural determination. Development, 125(10): 1967–1978
Pubmed
[144]
Pimeisl I M, Tanriver Y, Daza R A, Vauti F, Hevner R F, Arnold H H, Arnold S J (2013). Generation and characterization of a tamoxifen-inducible Eomes(CreER) mouse line. Genesis, 51(10): 725–733
CrossRef Pubmed Google scholar
[145]
Platel J C, Gordon V, Heintz T, Bordey A (2009). GFAP-GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia, 57(1): 66–78
CrossRef Pubmed Google scholar
[146]
Pollak J, Wilken M S, Ueki Y, Cox K E, Sullivan J M, Taylor R J, Levine E M, Reh T A (2013). ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors. Development, 140(12): 2619–2631
CrossRef Pubmed Google scholar
[147]
Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger M S, Garcia-Verdugo J M, Alvarez-Buylla A (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol, 494(3): 415–434
CrossRef Pubmed Google scholar
[148]
Raposo A A, Vasconcelos F F, Drechsel D, Marie C, Johnston C, Bithell A, Gillotin S, van den Berg D L, Ettwiller L, Flicek P, Crawford G E, Parras C M, Berninger B, Buckley N J, Guillemot F, Castro D S (2015). Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis. Cell Rep, 10(9): 1–13
[149]
Regan M R, Huang Y H, Kim Y S, Dykes-Hoberg M I, Jin L, Watkins A M, Bergles D E, Rothstein J D (2007). Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci, 27(25): 6607–6619
CrossRef Pubmed Google scholar
[150]
Sahay A, Hen R (2008). Hippocampal neurogenesis and depression. Novartis Found Symp 289, 152–160; discussion 160–154, 193–155
[151a]
Sahay A, Scobie K N, Hill A S, O'Carroll C M, Kheirbek M A, Burghardt N S, Fenton A A, Dranovsky A, Hen R (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472: 466–470
[151]
Sakamoto M, Ieki N, Miyoshi G, Mochimaru D, Miyachi H, Imura T, Yamaguchi M, Fishell G, Mori K, Kageyama R, Imayoshi I (2014). Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J Neurosci, 34(17): 5788–5799
CrossRef Pubmed Google scholar
[152]
Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301(5634): 805–809
CrossRef Pubmed Google scholar
[153]
Saxe M D, Battaglia F, Wang J W, Malleret G, David D J, Monckton J E, Garcia A D, Sofroniew M V, Kandel E R, Santarelli L, Hen R, Drew M R (2006). Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA, 103(46): 17501–17506
CrossRef Pubmed Google scholar
[154]
Schmid R S, Yokota Y, Anton E S (2006). Generation and characterization of brain lipid-binding protein promoter-based transgenic mouse models for the study of radial glia. Glia, 53(4): 345–351
CrossRef Pubmed Google scholar
[155]
Seri B, García-Verdugo J M, Collado-Morente L, McEwen B S, Alvarez-Buylla A (2004). Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol, 478(4): 359–378
CrossRef Pubmed Google scholar
[156]
Seri B, García-Verdugo J M, McEwen B S, Alvarez-Buylla A (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci, 21(18): 7153–7160
Pubmed
[157]
Shen Q, Wang Y, Kokovay E, Lin G, Chuang S M, Goderie S K, Roysam B, Temple S (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell, 3(3): 289–300
CrossRef Pubmed Google scholar
[158]
Shibata T, Watanabe M, Tanaka K, Wada K, Inoue Y (1996). Dynamic changes in expression of glutamate transporter mRNAs in developing brain. Neuroreport, 7(3): 705–709
CrossRef Pubmed Google scholar
[159]
Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997). Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci, 17(23): 9212–9219
Pubmed
[160]
Shimojo H, Ohtsuka T, Kageyama R (2008). Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron, 58(1): 52–64
CrossRef Pubmed Google scholar
[161]
Shin J, Berg D A, Zhu Y, Shin J Y, Song J, Bonaguidi M A, Enikolopov G, Nauen D W, Christian K M, Ming G L, Song H (2015). Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell, 17(3): 360–372
CrossRef Pubmed Google scholar
[162]
Shors T J, Townsend D A, Zhao M, Kozorovitskiy Y, Gould E (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12(5): 578–584
CrossRef Pubmed Google scholar
[163]
Sierra A, Encinas J M, Maletic-Savatic M (2011). Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci, 5: 47
CrossRef Pubmed Google scholar
[164]
Slezak M, Göritz C, Niemiec A, Frisén J, Chambon P, Metzger D, Pfrieger F W (2007). Transgenic mice for conditional gene manipulation in astroglial cells. Glia, 55(15): 1565–1576
CrossRef Pubmed Google scholar
[164a]
Snyder J S, Soumier A, Brewer M, Pickel J, Cameron H A (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 476: 458–461
[165]
Soriano P (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet, 21(1): 70–71
CrossRef Pubmed Google scholar
[166]
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
CrossRef Pubmed Google scholar
[167]
Suh H, Consiglio A, Ray J, Sawai T, D’Amour K A, Gage F H (2007). In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell, 1(5): 515–528
CrossRef Pubmed Google scholar
[168]
Sultan S, Gebara E, Toni N (2013). Doxycycline increases neurogenesis and reduces microglia in the adult hippocampus. Front Neurosci, 7: 131
Pubmed
[169]
Sun M Y, Yetman M J, Lee T C, Chen Y, Jankowsky J L (2014). Specificity and efficiency of reporter expression in adult neural progenitors vary substantially among nestin-CreER(T2) lines. J Comp Neurol, 522(5): 1191–1208
CrossRef Pubmed Google scholar
[170a]
Surget A, Tant A, Leonardo E D, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C (2011). Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry, 16: 1177–1188
Pubmed
[170]
Sutherland M L, Delaney T A, Noebels J L (1996). Glutamate transporter mRNA expression in proliferative zones of the developing and adult murine CNS. J Neurosci, 16(7): 2191–2207
Pubmed
[171]
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676
CrossRef Pubmed Google scholar
[172]
Takeda N, Jain R, Leboeuf M R, Padmanabhan A, Wang Q, Li L, Lu M M, Millar S E, Epstein J A (2013). Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development, 140(8): 1655–1664
CrossRef Pubmed Google scholar
[173]
Takeda N, Jain R, LeBoeuf M R, Wang Q, Lu M M, Epstein J A (2011). Interconversion between intestinal stem cell populations in distinct niches. Science, 334(6061): 1420–1424
CrossRef Pubmed Google scholar
[174]
Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo J M, Doetsch F (2008). A specialized vascular niche for adult neural stem cells. Cell Stem Cell, 3(3): 279–288
CrossRef Pubmed Google scholar
[175]
Tseng Y Y, Gruzdeva N, Li A, Chuang J Z, Sung C H (2010). Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain. J Comp Neurol, 518(16): 3327–3342
CrossRef Pubmed Google scholar
[176]
Uwanogho D, Rex M, Cartwright E J, Pearl G, Healy C, Scotting P J, Sharpe P T (1995). Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev, 49(1-2): 23–36
CrossRef Pubmed Google scholar
[177]
Venere M, Han Y G, Bell R, Song J S, Alvarez-Buylla A, Blelloch R (2012). Sox1 marks an activated neural stem/progenitor cell in the hippocampus. Development, 139(21): 3938–3949
CrossRef Pubmed Google scholar
[178]
Vierbuchen T, Ostermeier A, Pang Z P, Kokubu Y, Südhof T C, Wernig M (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284): 1035–1041
CrossRef Pubmed Google scholar
[179]
Walker T L, Overall R W, Vogler S, Sykes A M, Ruhwald S, Lasse D, Ichwan M, Fabel K, Kempermann G (2016). Lysophosphatidic acid receptor is a functional marker of adult hippocampal precursor cells. Stem Cell Rep, 6(4): 552–565
CrossRef Pubmed Google scholar
[180]
Walker T L, Yasuda T, Adams D J, Bartlett P F (2007). The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronal-lineage cells. J Neurosci, 27(14): 3734–3742
CrossRef Pubmed Google scholar
[181]
Wang X, Qiu R, Tsark W, Lu Q (2007). Rapid promoter analysis in developing mouse brain and genetic labeling of young neurons by doublecortin-DsRed-express. J Neurosci Res, 85(16): 3567–3573
CrossRef Pubmed Google scholar
[182]
Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov K V, Tarasova Y, Wersto R P, Boheler K R, Wobus A M (2004). Nestin expression—a property of multi-lineage progenitor cells? Cell Mol Life Sci, 61(19-20): 2510–2522
CrossRef Pubmed Google scholar
[183]
Williams S M, Sullivan R K, Scott H L, Finkelstein D I, Colditz P B, Lingwood B E, Dodd P R, Pow D V (2005). Glial glutamate transporter expression patterns in brains from multiple mammalian species. Glia, 49(4): 520–541
CrossRef Pubmed Google scholar
[183a]
Wojtowicz J M, Askew M L, Winocur G (2008). The effects of running and of inhibiting adult neurogenesis on learning and memory in rats. Eur J Neurosci, 27: 1494–1502
[184]
Yamaguchi M, Saito H, Suzuki M, Mori K (2000). Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport, 11(9): 1991–1996
CrossRef Pubmed Google scholar
[185]
Yang S M, Alvarez D D, Schinder A F (2015). Reliable Genetic Labeling of Adult-Born Dentate Granule Cells Using Ascl1 CreERT2 and Glast CreERT2 Murine Lines. J Neurosci, 35(46): 15379–15390
CrossRef Pubmed Google scholar
[186]
Yaworsky P J, Kappen C (1999). Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene. Dev Biol, 205(2): 309–321
CrossRef Pubmed Google scholar
[187]
Yu T S, Dandekar M, Monteggia L M, Parada L F, Kernie S G (2005). Temporally regulated expression of Cre recombinase in neural stem cells. Genesis, 41(4): 147–153
CrossRef Pubmed Google scholar
[188]
Zappone M V, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi A L, Lovell-Badge R, Ottolenghi S, Nicolis S K (2000). Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development, 127(11): 2367–2382
Pubmed
[189]
Zecevic N (2004). Specific characteristic of radial glia in the human fetal telencephalon. Glia, 48(1): 27–35
CrossRef Pubmed Google scholar
[190]
Zhang C L, Zou Y, He W, Gage F H, Evans R M (2008). A role for adult TLX-positive neural stem cells in learning and behaviour. Nature, 451(7181): 1004–1007
CrossRef Pubmed Google scholar
[191]
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
CrossRef Pubmed Google scholar
[192]
Zhuo L, Sun B, Zhang C L, Fine A, Chiu S Y, Messing A (1997). Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol, 187(1): 36–42
CrossRef Pubmed Google scholar
[193]
Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B, Mann J, Vassileva G, McMahon A (1994). Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron, 12(1): 11–24
CrossRef Pubmed Google scholar

Acknowledgments

We thank the members of Maletic-Savatic laboratory for comments and critical reading of the paper. This project was supported by the Dana Foundation, the McKnight Endowment for Science, the CPRIT grant (RP130573CPRIT), and the Nancy Chang Award for Research Excellence (M.M.S.). The research was also supported in part by the Baylor College of Medicine Microscopy Core (P30HD024064 Intellectual and Developmental Disabilities Research Grant from the Eunice Kennedy Shriver National Institute of Child Health and Human Development). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.‚‚

Compliance with ethics guidelines

Fatih Semerci and Mirjana Maletić-Savatić declare no conflicts of interest.
This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(1120 KB)

Accesses

Citations

Detail

Sections
Recommended

/