REVIEW

Targeting secret handshakes of biological processes for novel drug development

  • Rini Jacob ,
  • Anbalagan Moorthy
Expand
  • School of Bio-Sciences and Technology, VIT University, Vellore-632014, India

Received date: 29 Jan 2016

Accepted date: 25 Mar 2016

Published date: 17 May 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In multicellular organisms, several biological processes control the rise and fall of life. Different cell types communicate and co-operate in response to different stimulus through cell to cell signaling and regulate biologic processes in the cell/organism. Signaling in multicellular organism has to be made very secretly so that only the target cell responds to the signal. Of all the biomolecules, nature chose mainly proteins for secret delivery of information both inside and outside the cell. During cell signaling, proteins physically interact and shake hands for transfer of secret information by a phenomenon called as protein – protein interactions (PPIs). In both, extra and intracellular signaling processes PPIs play a crucial role. PPIs involved in cellular signaling are the primary cause for cell proliferation, differentiation, movement, metabolism, death and various other biological processes not mentioned here. These secret handshakes are very specific for specific functions. Any alterations/malfunctions in particular PPIs results in diseased condition. An overview of signaling pathways and importance of PPIs in cellular function and possibilities of targeting PPIs for novel drug development are discussed in this review.

Cite this article

Rini Jacob , Anbalagan Moorthy . Targeting secret handshakes of biological processes for novel drug development[J]. Frontiers in Biology, 2016 , 11(2) : 132 -140 . DOI: 10.1007/s11515-016-1394-2

Compliance with ethics guidelines

This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1
Asteria C (2002). T-box and isolated ACTH deficiency. Eur J Endocrinol, 146(4): 463–465

DOI PMID

2
Barr R K, Kendrick T S, Bogoyevitch M A (2002). Identification of the critical features of a small peptide inhibitor of JNK activity. J Biol Chem, 277(13): 10987–10997

DOI PMID

3
Berggård T, Linse S, James P (2007). Methods for the detection and analysis of protein-protein interactions. Proteomics, 7(16): 2833–2842

DOI PMID

4
Black A, Black J (2013). Protein kinase C signaling and cell cycle regulation. Front Immun, 3: 423

5
Blikstad C, Ivarsson Y (2015). High-throughput methods for identification of protein-protein interactions involving short linear motifs. Cell Commun Signal, 13(1): 38

DOI PMID

6
Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P (2011). Protein kinases and phosphatases in the control of cell fate. Enzyme Res, 2011: 329098

DOI PMID

7
Buckley D L, Gustafson J L, Van Molle I, Roth A G, Tae H S, Gareiss P C, Jorgensen W L, Ciulli A, Crews C M (2012). Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew Chem Int Ed Engl, 51(46): 11463–11467

DOI PMID

8
Coffin J M, Hughes S H, Varmus H E, eds. (1997). Immunopathogenic Mechanisms of HIV Infection Retroviruses. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press

9
Copolovici D M, Langel K, Eriste E, Langel Ü (2014). Cell-penetrating peptides: design, synthesis, and applications. ACS Nano, 8(3): 1972–1994

DOI PMID

10
De Luca A, Maiello M R, D’Alessio A, Pergameno M, Normanno N (2012). The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert OpinTher Targets, 16(Suppl 2): S17–S27

DOI PMID

11
Dickson H M, Wilbur A, Reinke A A, Young M A, Vojtek A B (2015). Targeted inhibition of the Shroom3-Rho kinase protein-protein interaction circumvents Nogo66 to promote axon outgrowth. BMC Neurosci, 16(1): 34

DOI PMID

12
Dikic I, Giordano S (2003).Negative receptor signalling. CurrOpin Cell Biol, 15(2): 128–135

DOI PMID

13
El Ghouzzi V, Legeai-Mallet L, Aresta S, Benoist C, Munnich A, de Gunzburg J, Bonaventure J (2000). Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location. Hum Mol Genet, 9(5): 813–819

DOI PMID

14
Enslen H, Davis R J (2001). Regulation of MAP kinases by docking domains. Biol Cell, 93(1-2): 5–14

DOI PMID

15
Favata M F, Horiuchi K Y, Manos E J, Daulerio A J, Stradley D A, Feeser W S, Van Dyk D E, Pitts W J, Earl R A, Hobbs F, Copeland R A, Magolda R L, Scherle P A, Trzaskos J M (1998). Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem, 273(29): 18623–18632

DOI PMID

16
Filicori M, Flamigni C (1988). GnRH agonists and antagonists.Current clinical status. Drugs, 35(1): 63–82

DOI PMID

17
Fosgerau K, Hoffmann T (2015). Peptide therapeutics: current status and future directions. Drug Discov Today, 20(1): 122–128

DOI PMID

18
Fu J, Meng X, He J, Gu J (2008). Inhibition of inflammation by a p38 MAP kinase targeted cell permeable peptide. Med Chem, 4(6): 597–604

DOI PMID

19
Gu H, Saito K, Klaman L D, Shen J, Fleming T, Wang Y, Pratt J C, Lin G, Lim B, Kinet J P, Neel B G (2001). Essential role for Gab2 in the allergic response. Nature, 412(6843): 186–190

DOI PMID

20
Hasegawa K, Martin F, Huang G, Tumas D, Diehl L, Chan A C (2004). PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science, 303(5658): 685–689

DOI PMID

21
Hiromura M, Okada F, Obata T, Auguin D, Shibata T, Roumestand C, Noguchi M (2004). Inhibition of Akt kinase activity by a peptide spanning the betaA strand of the proto-oncogene TCL1. J Biol Chem, 279(51): 53407–53418

DOI PMID

22
Hoelder S, Clarke P A, Workman P (2012). Discovery of small molecule cancer drugs: successes, challenges and opportunities. MolOncol, 6(2): 155–176

DOI PMID

23
Hornák V, Dvorský R, Sturdík E (1999). Receptor-ligand interaction and molecular modelling. Gen Physiol Biophys, 18(3): 231–248

PMID

24
Jameson D M, Vetromile C M, James N G (2013).Investigations of protein-protein interactions using time-resolved fluorescence and phasors. Methods, 59(3): 278–286

DOI PMID

25
Kallen J, Welzenbach K, Ramage P, Geyl D, Kriwacki R, Legge G, Cottens S, Weitz-Schmidt G, Hommel U (1999). Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. J Mol Biol, 292(1): 1–9

DOI PMID

26
Kastl J, Braun J, Prestel A, Möller H M, Huhn T, Mayer T U (2015). Mad2 inhibitor-1 (M2I-1): A small molecule protein-protein interaction inhibitor targeting the mitotic spindle assembly checkpoint. ACS Chem Biol, 10(7): 1661–1666

DOI PMID

27
Kelemen B R, Hsiao K, Goueli S A (2002). Selective in vivo inhibition of mitogen-activated protein kinase activation using cell-permeable peptides. J Biol Chem, 277(10): 8741–8748

DOI PMID

28
Kuan C Y, Burke R E (2005). Targeting the JNK signaling pathway for stroke and Parkinson’s diseases therapy. Curr Drug Targets CNS Neurol Disord, 4(1): 63–67

DOI PMID

29
Li H, Xiao H, Lin L, Jou D, Kumari V, Lin J, Li C (2014). Drug design targeting protein-protein interactions (PPIs) using multiple ligand simultaneous docking (MLSD) and drug repositioning: discovery of raloxifene and bazedoxifene as novel inhibitors of IL-6/GP130 interface. J Med Chem, 57(3): 632–641

DOI PMID

30
Li S H, Li X J (2004). Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet, 20(3): 146–154

DOI PMID

31
Lim J, Hao T, Shaw C, Patel A J, Szabó G, Rual J F, Fisk C J, Li N, Smolyar A, Hill D E, Barabási A L, Vidal M, Zoghbi H Y (2006). A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell, 125(4): 801–814

DOI PMID

32
Liu M, Li C, Pazgier M, Li C, Mao Y, Lv Y, Gu B, Wei G, Yuan W, Zhan C, Lu W Y, Lu W (2010). D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. ProcNatlAcadSci USA, 107(32): 14321–14326

DOI PMID

33
Liuzzi M, Déziel R, Moss N, Beaulieu P, Bonneau A M, Bousquet C, Chafouleas J G, Garneau M, Jaramillo J, Krogsrud R L, Lagacé L, McCollum R S, Nawoot S, Guindon Y (1994). A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature, 372(6507): 695–698

DOI PMID

34
Lodish H, Berk A, Zipursky S L, Matsudaira P, Baltimore D, Darnell J (2000). Molecular Cell Biology. 4th ed. New York: W. H. Freeman and Company

35
Lopes L B, Flynn C, Komalavilas P, Panitch A, Brophy C M, Seal B L (2009).Inhibition of HSP27 phosphorylation by a cell-permeant MAPKAP Kinase 2 inhibitor. BiochemBiophys Res Commun, 382(3): 535–539

DOI PMID

36
Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller R S, Yi H, Shangary S, Sun Y, Meagher J L, Stuckey J A, Wang S (2008). SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res, 68(22): 9384–9393

DOI PMID

37
Maruyama I N (2015).Activation of transmembrane cell-surface receptors via a common mechanism?The “rotation model”. BioEssays, 37(9): 959–967

DOI PMID

38
Maximov P Y, Lee T M, Jordan V C (2013). The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. CurrClinPharmacol, 8(2): 135–155

DOI PMID

39
May M J, D’Acquisto F, Madge L A, Glöckner J, Pober J S, Ghosh S (2000).Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science, 289(5484): 1550–1554

DOI PMID

40
Meyn M A3rd, Smithgall T E (2008). Small molecule inhibitors of Lck: the search for specificity within a kinase family. Mini Rev Med Chem, 8(6): 628–637

DOI PMID

41
Nakaoka Y, Komuro I (2013). Gab docking proteins in cardiovascular disease, cancer, and inflammation. Int J Inflamm, 2013: 141068

DOI PMID

42
Netzer W J, Dou F, Cai D, Veach D, Jean S, Li Y, Bornmann W G, Clarkson B, Xu H, Greengard P (2003). Gleevec inhibits β-amyloid production but not Notch cleavage. Proc Natl Acad Sci USA, 100(21): 12444–12449

DOI PMID

43
Ohtsuka M, Konno F, Honda H, Oikawa T, Ishikawa M, Iwase N, Isomae K, Ishii F, Hemmi H, Sato S (2002). PPA250 [3-(2,4-difluorophenyl)-6-[2-[4-(1H-imidazol-1-ylmethyl) phenoxy]ethoxy]-2-phenylpyridine], a novel orally effective inhibitor of the dimerization of inducible nitric-oxide synthase, exhibits an anti-inflammatory effect in animal models of chronic arthritis. J PharmacolExpTher, 303(1): 52–57

DOI PMID

44
Reiman E M, Webster J A, Myers A J, Hardy J, Dunckley T, Zismann V L, Joshipura K D, Pearson J V, Hu-Lince D, Huentelman M J, Craig D W, Coon K D, Liang W S, Herbert R H, Beach T, Rohrer K C, Zhao A S, Leung D, Bryden L, Marlowe L, Kaleem M, Mastroeni D, Grover A, Heward C B, Ravid R, Rogers J, Hutton M L, Melquist S, Petersen R C, Alexander G E, Caselli R J, Kukull W, Papassotiropoulos A, Stephan D A (2007). GAB2 alleles modify Alzheimer’s risk in APOE e4 carriers. Neuron, 54(5): 713–720

DOI PMID

45
Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol, 17(10): 1030–1032

DOI PMID

46
Saporito M S, Hudkins R L, Maroney A C (2002). Discovery of CEP-1347/KT-7515, an inhibitor of the JNK/SAPK pathway for the treatment of neurodegenerative diseases. Prog Med Chem, 40: 23–62

DOI PMID

47
Secko D (2013). Cell surface receptors: a biological conduit for information transfer. TSCQ, Issue 8

48
Seto M L, Lee S J, Sze R W, Cunningham M L (2001). Another TWIST on Baller-Gerold syndrome. Am J Med Genet, 104(4): 323–330

DOI PMID

49
Sever R, Glass C K (2013). Signaling by nuclear receptors. Cold Spring Harb Perspect Biol, 5(3): a016709

DOI PMID

50
Thanos C D, Randal M, Wells J A (2003).Potent small-molecule binding to a dynamic hot spot on IL-2. J Am ChemSoc, 125(50): 15280–15281

DOI PMID

51
Tian S S, Lamb P, King A G, Miller S G, Kessler L, Luengo J I, Averill L, Johnson R K, Gleason J G, Pelus L M, Dillon S B, Rosen J (1998). A small, nonpeptidyl mimic of granulocyte-colony-stimulating factor [see commetns]. Science, 281(5374): 257–259

DOI PMID

52
Tilley J W, Chen L, Fry D C, Emerson S D, Powers G D, Biondi D, Varnell T, Trilles R, Guthrie R, Mennona F, Kaplan G, LeMahieu R A, Carson M, Han R J, Liu C M, Palermo R, Ju G (1997). Identification of a small molecule inhibitor of the IL2/IL2rα receptor interaction which binds to IL-2. J Am ChemSoc, 119(32): 7589–7590

DOI

53
Toshchakov V Y, Fenton M J, Vogel S N (2007). Cutting Edge: Differential inhibition of TLR signaling pathways by cell-permeable peptides representing BB loops of TLRs. J Immunol, 178(5): 2655–2660

DOI PMID

54
Wada T, Nakashima T, Oliveira-dos-Santos A J, Gasser J, Hara H, Schett G, Penninger J M (2005). The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med, 11(4): 394–399

DOI PMID

55
Wang J L, Liu D, Zhang Z J, Shan S, Han X, Srinivasula S M, Croce C M, Alnemri E S, Huang Z (2000). Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA, 97(13): 7124–7129

DOI PMID

56
Wang Q, Feng J, Wang J, Zhang X, Zhang D, Zhu T, Wang W, Wang X, Jin J, Cao J, Li X, Peng H, Li Y, Shen B, Zhang J (2013). Disruption of TAB1/p38α interaction using a cell-permeable peptide limits myocardial ischemia/reperfusion injury. Mol Ther, 21(9): 1668–1677

DOI PMID

57
Wong B C U, Jiang X, Fan X M, Lin M C M, Jiang S H, Lam S K, Kung H F (2003). Suppression of RelA/p65 nuclear translocation independent of IkappaB-α degradation by cyclooxygenase-2 inhibitor in gastric cancer. Oncogene, 22(8): 1189–1197

DOI PMID

58
Young K H (1998). Yeast two-hybrid: so many interactions, (in) so little time...Biol Reprod, 58(2): 302–311

DOI PMID

59
Zhang W, Liu H T (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res, 12(1): 9–18

DOI PMID

60
Zhang Y, Diaz-Flores E, Li G, Wang Z, Kang Z, Haviernikova E, Rowe S, Qu C K, Tse W, Shannon K M, Bunting K D (2007). Abnormal hematopoiesis in Gab2 mutant mice. Blood, 110(1): 116–124

DOI PMID

61
Zhang Y, Eigenbrot C, Zhou L, Shia S, Li W, Quan C, Tom J, Moran P, Di Lello P, Skelton N J, Kong-Beltran M, Peterson A, Kirchhofer D (2014). Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J Biol Chem, 289(2): 942–955

DOI PMID

Outlines

/