Targeting secret handshakes of biological processes for novel drug development

Rini Jacob, Anbalagan Moorthy

PDF(470 KB)
PDF(470 KB)
Front. Biol. ›› 2016, Vol. 11 ›› Issue (2) : 132-140. DOI: 10.1007/s11515-016-1394-2
REVIEW
REVIEW

Targeting secret handshakes of biological processes for novel drug development

Author information +
History +

Abstract

In multicellular organisms, several biological processes control the rise and fall of life. Different cell types communicate and co-operate in response to different stimulus through cell to cell signaling and regulate biologic processes in the cell/organism. Signaling in multicellular organism has to be made very secretly so that only the target cell responds to the signal. Of all the biomolecules, nature chose mainly proteins for secret delivery of information both inside and outside the cell. During cell signaling, proteins physically interact and shake hands for transfer of secret information by a phenomenon called as protein – protein interactions (PPIs). In both, extra and intracellular signaling processes PPIs play a crucial role. PPIs involved in cellular signaling are the primary cause for cell proliferation, differentiation, movement, metabolism, death and various other biological processes not mentioned here. These secret handshakes are very specific for specific functions. Any alterations/malfunctions in particular PPIs results in diseased condition. An overview of signaling pathways and importance of PPIs in cellular function and possibilities of targeting PPIs for novel drug development are discussed in this review.

Keywords

cell signaling / protein-protein interactions / peptide inhibitors

Cite this article

Download citation ▾
Rini Jacob, Anbalagan Moorthy. Targeting secret handshakes of biological processes for novel drug development. Front. Biol., 2016, 11(2): 132‒140 https://doi.org/10.1007/s11515-016-1394-2

References

[1]
Asteria C (2002). T-box and isolated ACTH deficiency. Eur J Endocrinol, 146(4): 463–465
CrossRef Pubmed Google scholar
[2]
Barr R K, Kendrick T S, Bogoyevitch M A (2002). Identification of the critical features of a small peptide inhibitor of JNK activity. J Biol Chem, 277(13): 10987–10997
CrossRef Pubmed Google scholar
[3]
Berggård T, Linse S, James P (2007). Methods for the detection and analysis of protein-protein interactions. Proteomics, 7(16): 2833–2842
CrossRef Pubmed Google scholar
[4]
Black A, Black J (2013). Protein kinase C signaling and cell cycle regulation. Front Immun, 3: 423
[5]
Blikstad C, Ivarsson Y (2015). High-throughput methods for identification of protein-protein interactions involving short linear motifs. Cell Commun Signal, 13(1): 38
CrossRef Pubmed Google scholar
[6]
Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P (2011). Protein kinases and phosphatases in the control of cell fate. Enzyme Res, 2011: 329098
CrossRef Pubmed Google scholar
[7]
Buckley D L, Gustafson J L, Van Molle I, Roth A G, Tae H S, Gareiss P C, Jorgensen W L, Ciulli A, Crews C M (2012). Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew Chem Int Ed Engl, 51(46): 11463–11467
CrossRef Pubmed Google scholar
[8]
Coffin J M, Hughes S H, Varmus H E, eds. (1997). Immunopathogenic Mechanisms of HIV Infection Retroviruses. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press
[9]
Copolovici D M, Langel K, Eriste E, Langel Ü (2014). Cell-penetrating peptides: design, synthesis, and applications. ACS Nano, 8(3): 1972–1994
CrossRef Pubmed Google scholar
[10]
De Luca A, Maiello M R, D’Alessio A, Pergameno M, Normanno N (2012). The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert OpinTher Targets, 16(Suppl 2): S17–S27
CrossRef Pubmed Google scholar
[11]
Dickson H M, Wilbur A, Reinke A A, Young M A, Vojtek A B (2015). Targeted inhibition of the Shroom3-Rho kinase protein-protein interaction circumvents Nogo66 to promote axon outgrowth. BMC Neurosci, 16(1): 34
CrossRef Pubmed Google scholar
[12]
Dikic I, Giordano S (2003).Negative receptor signalling. CurrOpin Cell Biol, 15(2): 128–135
CrossRef Pubmed Google scholar
[13]
El Ghouzzi V, Legeai-Mallet L, Aresta S, Benoist C, Munnich A, de Gunzburg J, Bonaventure J (2000). Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location. Hum Mol Genet, 9(5): 813–819
CrossRef Pubmed Google scholar
[14]
Enslen H, Davis R J (2001). Regulation of MAP kinases by docking domains. Biol Cell, 93(1-2): 5–14
CrossRef Pubmed Google scholar
[15]
Favata M F, Horiuchi K Y, Manos E J, Daulerio A J, Stradley D A, Feeser W S, Van Dyk D E, Pitts W J, Earl R A, Hobbs F, Copeland R A, Magolda R L, Scherle P A, Trzaskos J M (1998). Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem, 273(29): 18623–18632
CrossRef Pubmed Google scholar
[16]
Filicori M, Flamigni C (1988). GnRH agonists and antagonists.Current clinical status. Drugs, 35(1): 63–82
CrossRef Pubmed Google scholar
[17]
Fosgerau K, Hoffmann T (2015). Peptide therapeutics: current status and future directions. Drug Discov Today, 20(1): 122–128
CrossRef Pubmed Google scholar
[18]
Fu J, Meng X, He J, Gu J (2008). Inhibition of inflammation by a p38 MAP kinase targeted cell permeable peptide. Med Chem, 4(6): 597–604
CrossRef Pubmed Google scholar
[19]
Gu H, Saito K, Klaman L D, Shen J, Fleming T, Wang Y, Pratt J C, Lin G, Lim B, Kinet J P, Neel B G (2001). Essential role for Gab2 in the allergic response. Nature, 412(6843): 186–190
CrossRef Pubmed Google scholar
[20]
Hasegawa K, Martin F, Huang G, Tumas D, Diehl L, Chan A C (2004). PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science, 303(5658): 685–689
CrossRef Pubmed Google scholar
[21]
Hiromura M, Okada F, Obata T, Auguin D, Shibata T, Roumestand C, Noguchi M (2004). Inhibition of Akt kinase activity by a peptide spanning the betaA strand of the proto-oncogene TCL1. J Biol Chem, 279(51): 53407–53418
CrossRef Pubmed Google scholar
[22]
Hoelder S, Clarke P A, Workman P (2012). Discovery of small molecule cancer drugs: successes, challenges and opportunities. MolOncol, 6(2): 155–176
CrossRef Pubmed Google scholar
[23]
Hornák V, Dvorský R, Sturdík E (1999). Receptor-ligand interaction and molecular modelling. Gen Physiol Biophys, 18(3): 231–248
Pubmed
[24]
Jameson D M, Vetromile C M, James N G (2013).Investigations of protein-protein interactions using time-resolved fluorescence and phasors. Methods, 59(3): 278–286
CrossRef Pubmed Google scholar
[25]
Kallen J, Welzenbach K, Ramage P, Geyl D, Kriwacki R, Legge G, Cottens S, Weitz-Schmidt G, Hommel U (1999). Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. J Mol Biol, 292(1): 1–9
CrossRef Pubmed Google scholar
[26]
Kastl J, Braun J, Prestel A, Möller H M, Huhn T, Mayer T U (2015). Mad2 inhibitor-1 (M2I-1): A small molecule protein-protein interaction inhibitor targeting the mitotic spindle assembly checkpoint. ACS Chem Biol, 10(7): 1661–1666
CrossRef Pubmed Google scholar
[27]
Kelemen B R, Hsiao K, Goueli S A (2002). Selective in vivo inhibition of mitogen-activated protein kinase activation using cell-permeable peptides. J Biol Chem, 277(10): 8741–8748
CrossRef Pubmed Google scholar
[28]
Kuan C Y, Burke R E (2005). Targeting the JNK signaling pathway for stroke and Parkinson’s diseases therapy. Curr Drug Targets CNS Neurol Disord, 4(1): 63–67
CrossRef Pubmed Google scholar
[29]
Li H, Xiao H, Lin L, Jou D, Kumari V, Lin J, Li C (2014). Drug design targeting protein-protein interactions (PPIs) using multiple ligand simultaneous docking (MLSD) and drug repositioning: discovery of raloxifene and bazedoxifene as novel inhibitors of IL-6/GP130 interface. J Med Chem, 57(3): 632–641
CrossRef Pubmed Google scholar
[30]
Li S H, Li X J (2004). Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet, 20(3): 146–154
CrossRef Pubmed Google scholar
[31]
Lim J, Hao T, Shaw C, Patel A J, Szabó G, Rual J F, Fisk C J, Li N, Smolyar A, Hill D E, Barabási A L, Vidal M, Zoghbi H Y (2006). A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell, 125(4): 801–814
CrossRef Pubmed Google scholar
[32]
Liu M, Li C, Pazgier M, Li C, Mao Y, Lv Y, Gu B, Wei G, Yuan W, Zhan C, Lu W Y, Lu W (2010). D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. ProcNatlAcadSci USA, 107(32): 14321–14326
CrossRef Pubmed Google scholar
[33]
Liuzzi M, Déziel R, Moss N, Beaulieu P, Bonneau A M, Bousquet C, Chafouleas J G, Garneau M, Jaramillo J, Krogsrud R L, Lagacé L, McCollum R S, Nawoot S, Guindon Y (1994). A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature, 372(6507): 695–698
CrossRef Pubmed Google scholar
[34]
Lodish H, Berk A, Zipursky S L, Matsudaira P, Baltimore D, Darnell J (2000). Molecular Cell Biology. 4th ed. New York: W. H. Freeman and Company
[35]
Lopes L B, Flynn C, Komalavilas P, Panitch A, Brophy C M, Seal B L (2009).Inhibition of HSP27 phosphorylation by a cell-permeant MAPKAP Kinase 2 inhibitor. BiochemBiophys Res Commun, 382(3): 535–539
CrossRef Pubmed Google scholar
[36]
Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller R S, Yi H, Shangary S, Sun Y, Meagher J L, Stuckey J A, Wang S (2008). SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res, 68(22): 9384–9393
CrossRef Pubmed Google scholar
[37]
Maruyama I N (2015).Activation of transmembrane cell-surface receptors via a common mechanism?The “rotation model”. BioEssays, 37(9): 959–967
CrossRef Pubmed Google scholar
[38]
Maximov P Y, Lee T M, Jordan V C (2013). The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. CurrClinPharmacol, 8(2): 135–155
CrossRef Pubmed Google scholar
[39]
May M J, D’Acquisto F, Madge L A, Glöckner J, Pober J S, Ghosh S (2000).Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science, 289(5484): 1550–1554
CrossRef Pubmed Google scholar
[40]
Meyn M A3rd, Smithgall T E (2008). Small molecule inhibitors of Lck: the search for specificity within a kinase family. Mini Rev Med Chem, 8(6): 628–637
CrossRef Pubmed Google scholar
[41]
Nakaoka Y, Komuro I (2013). Gab docking proteins in cardiovascular disease, cancer, and inflammation. Int J Inflamm, 2013: 141068
CrossRef Pubmed Google scholar
[42]
Netzer W J, Dou F, Cai D, Veach D, Jean S, Li Y, Bornmann W G, Clarkson B, Xu H, Greengard P (2003). Gleevec inhibits β-amyloid production but not Notch cleavage. Proc Natl Acad Sci USA, 100(21): 12444–12449
CrossRef Pubmed Google scholar
[43]
Ohtsuka M, Konno F, Honda H, Oikawa T, Ishikawa M, Iwase N, Isomae K, Ishii F, Hemmi H, Sato S (2002). PPA250 [3-(2,4-difluorophenyl)-6-[2-[4-(1H-imidazol-1-ylmethyl) phenoxy]ethoxy]-2-phenylpyridine], a novel orally effective inhibitor of the dimerization of inducible nitric-oxide synthase, exhibits an anti-inflammatory effect in animal models of chronic arthritis. J PharmacolExpTher, 303(1): 52–57
CrossRef Pubmed Google scholar
[44]
Reiman E M, Webster J A, Myers A J, Hardy J, Dunckley T, Zismann V L, Joshipura K D, Pearson J V, Hu-Lince D, Huentelman M J, Craig D W, Coon K D, Liang W S, Herbert R H, Beach T, Rohrer K C, Zhao A S, Leung D, Bryden L, Marlowe L, Kaleem M, Mastroeni D, Grover A, Heward C B, Ravid R, Rogers J, Hutton M L, Melquist S, Petersen R C, Alexander G E, Caselli R J, Kukull W, Papassotiropoulos A, Stephan D A (2007). GAB2 alleles modify Alzheimer’s risk in APOE e4 carriers. Neuron, 54(5): 713–720
CrossRef Pubmed Google scholar
[45]
Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol, 17(10): 1030–1032
CrossRef Pubmed Google scholar
[46]
Saporito M S, Hudkins R L, Maroney A C (2002). Discovery of CEP-1347/KT-7515, an inhibitor of the JNK/SAPK pathway for the treatment of neurodegenerative diseases. Prog Med Chem, 40: 23–62
CrossRef Pubmed Google scholar
[47]
Secko D (2013). Cell surface receptors: a biological conduit for information transfer. TSCQ, Issue 8
[48]
Seto M L, Lee S J, Sze R W, Cunningham M L (2001). Another TWIST on Baller-Gerold syndrome. Am J Med Genet, 104(4): 323–330
CrossRef Pubmed Google scholar
[49]
Sever R, Glass C K (2013). Signaling by nuclear receptors. Cold Spring Harb Perspect Biol, 5(3): a016709
CrossRef Pubmed Google scholar
[50]
Thanos C D, Randal M, Wells J A (2003).Potent small-molecule binding to a dynamic hot spot on IL-2. J Am ChemSoc, 125(50): 15280–15281
CrossRef Pubmed Google scholar
[51]
Tian S S, Lamb P, King A G, Miller S G, Kessler L, Luengo J I, Averill L, Johnson R K, Gleason J G, Pelus L M, Dillon S B, Rosen J (1998). A small, nonpeptidyl mimic of granulocyte-colony-stimulating factor [see commetns]. Science, 281(5374): 257–259
CrossRef Pubmed Google scholar
[52]
Tilley J W, Chen L, Fry D C, Emerson S D, Powers G D, Biondi D, Varnell T, Trilles R, Guthrie R, Mennona F, Kaplan G, LeMahieu R A, Carson M, Han R J, Liu C M, Palermo R, Ju G (1997). Identification of a small molecule inhibitor of the IL2/IL2rα receptor interaction which binds to IL-2. J Am ChemSoc, 119(32): 7589–7590
CrossRef Google scholar
[53]
Toshchakov V Y, Fenton M J, Vogel S N (2007). Cutting Edge: Differential inhibition of TLR signaling pathways by cell-permeable peptides representing BB loops of TLRs. J Immunol, 178(5): 2655–2660
CrossRef Pubmed Google scholar
[54]
Wada T, Nakashima T, Oliveira-dos-Santos A J, Gasser J, Hara H, Schett G, Penninger J M (2005). The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med, 11(4): 394–399
CrossRef Pubmed Google scholar
[55]
Wang J L, Liu D, Zhang Z J, Shan S, Han X, Srinivasula S M, Croce C M, Alnemri E S, Huang Z (2000). Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA, 97(13): 7124–7129
CrossRef Pubmed Google scholar
[56]
Wang Q, Feng J, Wang J, Zhang X, Zhang D, Zhu T, Wang W, Wang X, Jin J, Cao J, Li X, Peng H, Li Y, Shen B, Zhang J (2013). Disruption of TAB1/p38α interaction using a cell-permeable peptide limits myocardial ischemia/reperfusion injury. Mol Ther, 21(9): 1668–1677
CrossRef Pubmed Google scholar
[57]
Wong B C U, Jiang X, Fan X M, Lin M C M, Jiang S H, Lam S K, Kung H F (2003). Suppression of RelA/p65 nuclear translocation independent of IkappaB-α degradation by cyclooxygenase-2 inhibitor in gastric cancer. Oncogene, 22(8): 1189–1197
CrossRef Pubmed Google scholar
[58]
Young K H (1998). Yeast two-hybrid: so many interactions, (in) so little time...Biol Reprod, 58(2): 302–311
CrossRef Pubmed Google scholar
[59]
Zhang W, Liu H T (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res, 12(1): 9–18
CrossRef Pubmed Google scholar
[60]
Zhang Y, Diaz-Flores E, Li G, Wang Z, Kang Z, Haviernikova E, Rowe S, Qu C K, Tse W, Shannon K M, Bunting K D (2007). Abnormal hematopoiesis in Gab2 mutant mice. Blood, 110(1): 116–124
CrossRef Pubmed Google scholar
[61]
Zhang Y, Eigenbrot C, Zhou L, Shia S, Li W, Quan C, Tom J, Moran P, Di Lello P, Skelton N J, Kong-Beltran M, Peterson A, Kirchhofer D (2014). Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J Biol Chem, 289(2): 942–955
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(470 KB)

Accesses

Citations

Detail

Sections
Recommended

/