REVIEW

Functional role of metalloproteins in genome stability

  • Chunqiang Zhang 1,1 _FIB-10392-CGZ ,
  • Fan Zhang 1,1 _FIB-10392-CGZ ,
  • Ping Zhou 2,2 _FIB-10392-CGZ ,
  • Caiguo Zhang , 3
Expand
  • 1. Department of Orthopedics, The first Affiliated Hospital of Kunming Medical University, Kunming 650032, China
  • 2. Department of Nephrology, Jiangxi Provincial People's Hospital Nanchang, Nanchang 330006, China
  • 3. Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA

Received date: 09 Feb 2016

Accepted date: 20 Mar 2016

Published date: 17 May 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Cells contain a large number of metalloproteins that commonly harbor at least one metal ion cofactor. In metalloproteins, metal ions are usually coordinated by oxygen, sulfur, or nitrogen centers belonging to amino acid residues in the protein. The presence of the metal ion in metalloproteins allows them to take part in diverse biological processes, such as genome stability, metabolic catalysis, and cell cycle progression. Clinically, alteration of the function of metalloproteins in mammals is genetically associated with diseases characterized by DNA damage and repair defects. The present review focuses on the current perspectives of metal ion homeostasis in different organisms and summarizes the most recent understanding on magnesium, copper, iron, and manganese-containing proteins and their functional involvement in the maintenance of genome stability.

Cite this article

Chunqiang Zhang , Fan Zhang , Ping Zhou , Caiguo Zhang . Functional role of metalloproteins in genome stability[J]. Frontiers in Biology, 2016 , 11(2) : 119 -131 . DOI: 10.1007/s11515-016-1392-4

Acknowledgements

We apologize to authors whose contributions have not been cited due to space limitations.
Chunqiang Zhang, Fan Zhang, and Ping Zhou prepared and organized the sections pertaining to “Magnesium-containing proteins,” “Copper-containing proteins,” and “Manganese-containing proteins,” respectively. Caiguo Zhang prepared and organized the section on “Magnesium-containing proteins” and wrote the paper.
The authors declare no conflicts of interest. This article does not contain any studies with human or animal as subjects performed by any of the authors.
1
Abraham J, Balbo S, Crabb D, Brooks P J (2011). Alcohol metabolism in human cells causes DNA damage and activates the Fanconi anemia-breast cancer susceptibility (FA-BRCA) DNA damage response network. Alcohol Clin Exp Res, 35(12): 2113–2120

DOI PMID

2
Acharya N, Johnson R E, Prakash S, Prakash L (2006). Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol, 26(24): 9555–9563

DOI PMID

3
Aleshin A E, Zeng C, Bourenkov G P, Bartunik H D, Fromm H J, Honzatko R B (1998). The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. Structure, 6(1): 39–50

DOI PMID

4
Ambani L M, Van Woert M H, Murphy S (1975). Brain peroxidase and catalase in Parkinson disease. Arch Neurol, 32(2): 114–118

DOI PMID

5
An X, Zhang C, Sclafani R A, Seligman P, Huang M (2015). The late-annotated small ORF LSO1 is a target gene of the iron regulon of Saccharomyces cerevisiae. MicrobiologyOpen, 4(6): 941–951

DOI PMID

6
Ansley D M, Wang B (2013). Oxidative stress and myocardial injury in the diabetic heart. J Pathol, 229(2): 232–241

DOI PMID

7
Arigony A L, de Oliveira I M, Machado M, Bordin D L, Bergter L, Prá D, Henriques J A (2013). The influence of micronutrients in cell culture: a reflection on viability and genomic stability. BioMed Res Int, 2013: 597282

DOI PMID

8
Bachelard H S (1971). Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion—adenosine triphosphate complex. Biochem J, 125(1): 249–254

DOI PMID

9
Banci L, Bertini I (2013). Metallomics and the cell: some definitions and general comments. Met Ions Life Sci, 12: 1–13

DOI PMID

10
Barbosa L F, Cerqueira F M, Macedo A F, Garcia C C, Angeli J P, Schumacher R I, Sogayar M C, Augusto O, Carrì M T, Di Mascio P, Medeiros M H (2010). Increased SOD1 association with chromatin, DNA damage, p53 activation, and apoptosis in a cellular model of SOD1-linked ALS. Biochim Biophys Acta, 1802(5): 462–471

DOI PMID

11
Behrend L, Mohr A, Dick T, Zwacka R M (2005). Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol, 25(17): 7758–7769

DOI PMID

12
Brosh R M Jr (2013). DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer, 13(8): 542–558

DOI PMID

13
Brown D R (2010). Metalloproteins and neuronal death. Metallomics, 2(3): 186–194

DOI PMID

14
Brunori M, Giuffrè A, Sarti P (2005). Cytochrome c oxidase, ligands and electrons. J Inorg Biochem, 99(1): 324–336

DOI PMID

15
Candas D, Li J J (2014). MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal, 20(10): 1599–1617

DOI PMID

16
Cappelli E, Carrozzino F, Abbondandolo A, Frosina G (1999). The DNA helicases acting in nucleotide excision repair, XPD, CSB and XPB, are not required for PCNA-dependent repair of abasic sites. Eur J Biochem, 259(1-2): 325–330

DOI PMID

17
Cárdenas M L, Cornish-Bowden A, Ureta T (1998). Evolution and regulatory role of the hexokinases. Biochim Biophys Acta, 1401(3): 242–264

DOI PMID

18
Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, Campbell J L, Kowalczykowski S C (2010). DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature, 467(7311): 112–116

DOI PMID

19
Chen Z, Sui J, Zhang F, Zhang C (2015). Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms. J Cancer, 6(3): 233–242

DOI PMID

20
Chung J Y, Kim H J, Kim M (2015). The protective effect of growth hormone on Cu/Zn superoxide dismutase-mutant motor neurons. BMC Neurosci, 16(1): 1

DOI PMID

21
Cooper C E, Torres J, Sharpe M A, Wilson M T (1997). Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: a general mechanism for the interaction of copper proteins with nitric oxide? FEBS Lett, 414(2): 281–284

DOI PMID

22
Cruciat C M, Brunner S, Baumann F, Neupert W, Stuart R A (2000). The cytochrome bc1 and cytochrome c oxidase complexes associate to form a single supracomplex in yeast mitochondria. J Biol Chem, 275(24): 18093–18098

DOI PMID

23
D’Agnillo F, Wood F, Porras C, Macdonald V W, Alayash A I (2000). Effects of hypoxia and glutathione depletion on hemoglobin- and myoglobin-mediated oxidative stress toward endothelium. Biochim Biophys Acta, 1495(2): 150–159

PMID

24
Dlouhy A C, Outten C E (2013). The iron metallome in eukaryotic organisms. Met Ions Life Sci, 12: 241–278

DOI PMID

25
Dong K, Addinall S G, Lydall D, Rutherford J C (2013). The yeast copper response is regulated by DNA damage. Mol Cell Biol, 33(20): 4041–4050

DOI PMID

26
Doublié S, Tabor S, Long A M, Richardson C C, Ellenberger T (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature, 391(6664): 251–258

DOI PMID

27
Dowling D P, Di Costanzo L, Gennadios H A, Christianson D W (2008). Evolution of the arginase fold and functional diversity. Cell Mol Life Sci, 65(13): 2039–2055

DOI PMID

28
Edenberg H J (2007). The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health, 30(1): 5–13

PMID

29
Eide D J (2006). Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta, 1763(7): 711–722

DOI PMID

30
El Mjiyad N, Caro-Maldonado A, Ramírez-Peinado S, Muñoz-Pinedo C (2011). Sugar-free approaches to cancer cell killing. Oncogene, 30(3): 253–264

DOI PMID

31
Elmore S (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4): 495–516

DOI PMID

32
Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012). Role of apoptosis in disease. Aging (Albany, NY), 4(5): 330–349

DOI PMID

33
Franklin R B, Ma J, Zou J, Guan Z, Kukoyi B I, Feng P, Costello L C (2003). Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem, 96(2-3): 435–442

DOI PMID

34
Frey A G, Bird A J, Evans-Galea M V, Blankman E, Winge D R, Eide D J (2011). Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator. PLoS ONE, 6(7): e22535

DOI PMID

35
Gardner A F, Kelman Z (2014). DNA polymerases in biotechnology. Front Microbiol, 5: 659

DOI PMID

36
Gari K, León Ortiz A M, Borel V, Flynn H, Skehel J M, Boulton S J (2012). MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science, 337(6091): 243–245

DOI PMID

37
Garry D J, Mammen P P (2007). Molecular insights into the functional role of myoglobin. Adv Exp Med Biol, 618: 181–193

DOI PMID

38
Glorieux C, Auquier J, Dejeans N, Sid B, Demoulin J B, Bertrand L, Verrax J, Calderon P B (2014). Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway. Biochem Pharmacol, 89(2): 217–223

DOI PMID

39
Goodarzi M, Moosavi-Movahedi A A, Habibi-Rezaei M, Shourian M, Ghourchian H, Ahmad F, Farhadi M, Saboury A A, Sheibani N (2014). Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. Spectrochim Acta A Mol Biomol Spectrosc, 130: 561–567

DOI PMID

40
Góth L (2008). Catalase deficiency and type 2 diabetes. Diabetes Care, 31(12): e93

DOI PMID

41
Gottlob K, Majewski N, Kennedy S, Kandel E, Robey R B, Hay N (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev, 15(11): 1406–1418

DOI PMID

42
Gourianov N, Kluger R (2003). Cross-linked bis-hemoglobins: connections and oxygen binding. J Am Chem Soc, 125(36): 10885–10892

DOI PMID

43
Gwanyanya A, Amuzescu B, Zakharov S I, Macianskiene R, Sipido K R, Bolotina V M, Vereecke J, Mubagwa K (2004). Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation. J Physiol, 559(Pt 3): 761–776

DOI PMID

44
Harper J W, Elledge S J (2007). The DNA damage response: ten years after. Mol Cell, 28(5): 739–745

DOI PMID

45
Hartwig A (2001). Role of magnesium in genomic stability. Mutat Res, 475(1-2): 113–121

DOI PMID

46
Holzer A K, Samimi G, Katano K, Naerdemann W, Lin X, Safaei R, Howell S B (2004). The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol Pharmacol, 66(4): 817–823

DOI PMID

47
Horn D, Barrientos A (2008). Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life, 60(7): 421–429

DOI PMID

48
Huttemann M, Lee I, Grossman L I, Doan J W, Sanderson T H (2012). Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: respiration, apoptosis, and human disease.AdvExp Med Biol, 748: 237–264

49
Jacobo-Molina A, Ding J, Nanni R G, Clark A D Jr, Lu X, Tantillo C, Williams R L, Kamer G, Ferris A L, Clark P (1993). Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci USA, 90(13): 6320–6324

DOI PMID

50
Jiang N, Tan N S, Ho B, Ding J L (2007). Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nat Immunol, 8(10): 1114–1122

DOI PMID

51
Johnson D C, Dean D R, Smith A D, Johnson M K (2005). Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem, 74(1): 247–281

DOI PMID

52
Kaji A, Colowick S P (1965). Adenosine triphosphatase activity of yeast hexokinase and its relation to the mechanism of the hexokinase reaction. J Biol Chem, 240(11): 4454–4462

PMID

53
Kamga C, Krishnamurthy S, Shiva S (2012). Myoglobin and mitochondria: a relationship bound by oxygen and nitric oxide. Nitric Oxide, 26(4): 251–258

DOI PMID

54
Kang M Y, Kim H B, Piao C, Lee K H, Hyun J W, Chang I Y, You H J (2013). The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ, 20(1): 117–129

DOI PMID

55
Kee Y, D’Andrea A D (2010). Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev, 24(16): 1680–1694

DOI PMID

56
Kelley E E, Khoo N K, Hundley N J, Malik U Z, Freeman B A, Tarpey M M (2010). Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med, 48(4): 493–498

DOI PMID

57
Keyer K, Imlay J A (1996). Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA, 93(24): 13635–13640

DOI PMID

58
Kim J, Kil I S, Seok Y M, Yang E S, Kim D K, Lim D G, Park J W, Bonventre J V, Park K M (2006). Orchiectomy attenuates post-ischemic oxidative stress and ischemia/reperfusion injury in mice. A role for manganese superoxide dismutase. J Biol Chem, 281(29): 20349–20356

DOI PMID

59
Kim M, Lim J H, Ahn C S, Park K, Kim G T, Kim W T, Pai H S (2006). Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell, 18(9): 2341–2355

DOI PMID

60
Kim S J, Cheresh P, Williams D, Cheng Y, Ridge K, Schumacker P T, Weitzman S, Bohr V A, Kamp D W (2014). Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. J Biol Chem, 289(9): 6165–6176

DOI PMID

61
Lange S S, Takata K, Wood R D (2011). DNA polymerases and cancer. Nat Rev Cancer, 11(2): 96–110

DOI PMID

62
Lee B S, Bi L, Garfinkel D J, Bailis A M (2000). Nucleotide excision repair/TFIIH helicases RAD3 and SSL2 inhibit short-sequence recombination and Ty1 retrotransposition by similar mechanisms. Mol Cell Biol, 20(7): 2436–2445

DOI PMID

63
Li J, Liu J, Wang G, Cha J Y, Li G, Chen S, Li Z, Guo J, Zhang C, Yang Y, Kim W Y, Yun D J, Schumaker K S, Chen Z, Guo Y (2015). A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell, 27(3): 908–925

DOI PMID

64
Li Y, Huang T T, Carlson E J, Melov S, Ursell P C, Olson J L, Noble L J, Yoshimura M P, Berger C, Chan P H, Wallace D C, Epstein C J (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet, 11(4): 376–381

DOI PMID

65
Li Y, Mitaxov V, Waksman G (1999). Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. Proc Natl Acad Sci USA, 96(17): 9491–9496

DOI PMID

66
Lill R, Hoffmann B, Molik S, Pierik A J, Rietzschel N, Stehling O, Uzarska M A, Webert H, Wilbrecht C, Mühlenhoff U (2012). The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta, 1823(9): 1491–1508

DOI PMID

67
Ling H, Boudsocq F, Woodgate R, Yang W (2001). Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell, 107(1): 91–102

DOI PMID

68
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014). Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev, 114(8): 4366–4469

DOI PMID

69
Lohman T M (1992). Escherichia coli DNA helicases: mechanisms of DNA unwinding. Mol Microbiol, 6(1): 5–14

DOI PMID

70
Ma Z, Jacobsen F E, Giedroc D P (2009). Coordination chemistry of bacterial metal transport and sensing. Chem Rev, 109(10): 4644–4681

DOI PMID

71
Maret W (2010). Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Metallomics, 2(2): 117–125

DOI PMID

72
Meyer A S, Blandino M, Spratt T E (2004). Escherichia coli DNA polymerase I (Klenow fragment) uses a hydrogen-bonding fork from Arg668 to the primer terminus and incoming deoxynucleotide triphosphate to catalyze DNA replication. J Biol Chem, 279(32): 33043–33046

DOI PMID

73
Miyabe I, Kunkel T A, Carr A M (2011). The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet, 7(12): e1002407

DOI PMID

74
Moltedo B, Faunes F, Haussmann D, De Ioannes P, De Ioannes A E, Puente J, Becker M I (2006). Immunotherapeutic effect of Concholepas hemocyanin in the murine bladder cancer model: evidence for conserved antitumor properties among hemocyanins. J Urol, 176(6 Pt 1): 2690–2695

DOI PMID

75
Moreira L G, Pereira L C, Drummond P R, De Mesquita J F (2013). Structural and functional analysis of human SOD1 in amyotrophic lateral sclerosis. PLoS ONE, 8(12): e81979

DOI PMID

76
Mori M (2007). Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr, 137(6 Suppl 2): 1616S–1620S

PMID

77
Mulichak A M, Wilson J E, Padmanabhan K, Garavito R M (1998). The structure of mammalian hexokinase-1. Nat Struct Biol, 5(7): 555–560

DOI PMID

78
Nakano K, Bálint E, Ashcroft M, Vousden K H (2000). A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene, 19(37): 4283–4289

DOI PMID

79
Netz D J, Stith C M, Stümpfig M, Köpf G, Vogel D, Genau H M, Stodola J L, Lill R, Burgers P M, Pierik A J (2012). Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol, 8(1): 125–132

DOI PMID

80
Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, Noguchi T, Matsuzawa A, Takeda K, Ichijo H (2008). ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev, 22(11): 1451–1464

DOI PMID

81
Öhrvik H, Nose Y, Wood L K, Kim B E, Gleber S C, Ralle M, Thiele D J (2013). Ctr2 regulates biogenesis of a cleaved form of mammalian Ctr1 metal transporter lacking the copper- and cisplatin-binding ecto-domain. Proc Natl Acad Sci USA, 110(46): E4279–E4288

DOI PMID

82
Pasinelli P, Belford M E, Lennon N, Bacskai B J, Hyman B T, Trotti D, Brown R H Jr (2004). Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron, 43(1): 19–30

DOI PMID

83
Peers G, Price N M (2006). Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature, 441(7091): 341–344

DOI PMID

84
Peng J, Stevenson F F, Doctrow S R, Andersen J K (2005). Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem, 280(32): 29194–29198

DOI PMID

85
Plotnikov E Y, Chupyrkina A A, Pevzner I B, Isaev N K, Zorov D B (2009). Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney’s mitochondria. Biochim Biophys Acta, 1792(8): 796–803

DOI PMID

86
Purich D L, Fromm H J (1972). Activation of brain hexokinase by magnesium ions and by magnesium ion—adenosine triphosphate complex. Biochem J, 130(1): 63–69

DOI PMID

87
Ravet K, Pilon M (2013). Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal, 19(9): 919–932

DOI PMID

88
Rodrigo R, Libuy M, Feliú F, Hasson D (2013). Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers, 35(6): 773–790

DOI PMID

89
Rolfs A, Hediger M A (1999). Metal ion transporters in mammals: structure, function and pathological implications. J Physiol, 518(Pt 1): 1–12

DOI PMID

90
Rouault T A (2012). Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech, 5(2): 155–164

DOI PMID

91
Rouault T A (2015). Iron-sulfur proteins hiding in plain sight. Nat Chem Biol, 11(7): 442–445

DOI PMID

92
Sanvisens N, Romero A M, An X, Zhang C, de Llanos R, Martínez-Pastor M T, Bañó M C, Huang M, Puig S (2014). Yeast Dun1 kinase regulates ribonucleotide reductase inhibitor Sml1 in response to iron deficiency. Mol Cell Biol, 34(17): 3259–3271

DOI PMID

93
Sarker M M, Zhong M (2014). Keyhole limpet hemocyanin augmented the killing activity, cytokine production and proliferation of NK cells, and inhibited the proliferation of Meth A sarcoma cells in vitro. Indian J Pharmacol, 46(1): 40–45

DOI PMID

94
Sawaya M R, Prasad R, Wilson S H, Kraut J, Pelletier H (1997). Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry, 36(37): 11205–11215

DOI PMID

95
Schiavone J R, Hassan H M (1988). The role of redox in the regulation of manganese-containing superoxide dismutase biosynthesis in Escherichia coli. J BiolChem, 263: 4269–4273. Li Y, Huang T T, Carlson E J, Melov S, Ursell P C, Olson J L, Noble L J, Yoshimura M P, Berger C, Chan P H, Wallace D C, Epstein C J (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet, 11: 376–381

96
Schlieper G, Kim J H, Molojavyi A, Jacoby C, Laussmann T, Flögel U, Gödecke A, Schrader J (2004). Adaptation of the myoglobin knockout mouse to hypoxic stress. Am J Physiol Regul Integr Comp Physiol, 286(4): R786–R792

DOI PMID

97
Schumacher S B, Stucki M, Hübscher U (2000). The N-terminal region of DNA polymerase delta catalytic subunit is necessary for holoenzyme function. Nucleic Acids Res, 28(2): 620–625

DOI PMID

98
Scudiero R, Trinchella F, Riggio M, Parisi E (2007). Structure and expression of genes involved in transport and storage of iron in red-blooded and hemoglobin-less antarctic notothenioids. Gene, 397(1-2): 1–11

DOI PMID

99
Shah N, Inoue A, Woo Lee S, Beishline K, Lahti J M, Noguchi E (2013). Roles of ChlR1 DNA helicase in replication recovery from DNA damage. Exp Cell Res, 319(14): 2244–2253

DOI PMID

100
Shapleigh J P, Hosler J P, Tecklenburg M M, Kim Y, Babcock G T, Gennis R B, Ferguson-Miller S (1992). Definition of the catalytic site of cytochrome c oxidase: specific ligands of heme a and the heme a3-CuB center. Proc Natl Acad Sci USA, 89(11): 4786–4790

DOI PMID

101
Shefner J M, Reaume A G, Flood D G, Scott R W, Kowall N W, Ferrante R J, Siwek D F, Upton-Rice M, Brown R H Jr (1999). Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology, 53(6): 1239–1246

DOI PMID

102
Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov A I, Whittaker J W, Gorton L (2005). Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron, 20(12): 2517–2554

DOI PMID

103
Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002). Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem, 277(30): 26944–26949

DOI PMID

104
Sivakamavalli J, Vaseeharan B (2015). Enzymatic elucidation of haemocyanin from Kuruma shrimp Marsupenaeus japonicus and its molecular recognition mechanism towards pathogens. J Biomol Struct Dyn, 33(6): 1302–1314

DOI PMID

105
Soo K Y, Atkin J D, Horne M K, Nagley P (2009). Recruitment of mitochondria into apoptotic signaling correlates with the presence of inclusions formed by amyotrophic lateral sclerosis-associated SOD1 mutations. J Neurochem, 108(3): 578–590

DOI PMID

106
Srinivasan S, Avadhani N G (2012). Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med, 53(6): 1252–1263

DOI PMID

107
Stehling O, Mascarenhas J, Vashisht A A, Sheftel A D, Niggemeyer B, Rösser R, Pierik A J, Wohlschlegel J A, Lill R (2013). Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Cell Metab, 18(2): 187–198

DOI PMID

108
Stehling O, Vashisht A A, Mascarenhas J, Jonsson Z O, Sharma T, Netz D J, Pierik A J, Wohlschlegel J A, Lill R (2012). MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science, 337(6091): 195–199

DOI PMID

109
Sutton M D, Walker G C (2001). Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc Natl Acad Sci USA, 98(15): 8342–8349

DOI PMID

110
Tafuri F, Ronchi D, Magri F, Comi G P, Corti S (2015). SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci, 9: 336

DOI PMID

111
Torti S V, Torti F M (2013). Iron and cancer: more ore to be mined. Nat Rev Cancer, 13(5): 342–355

DOI PMID

112
Totzeck M, Hendgen-Cotta U B, Kelm M, Rassaf T (2014). Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia. PLoS ONE, 9(8): e105951

DOI PMID

113
Uramoto H, Sugio K, Oyama T, Hanagiri T, Yasumoto K (2006). P53R2, p53 inducible ribonucleotide reductase gene, correlated with tumor progression of non-small cell lung cancer. Anticancer Res, 26(2A): 983–988

PMID

114
Uringa E J, Youds J L, Lisaingo K, Lansdorp P M, Boulton S J (2011). RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res, 39(5): 1647–1655

DOI PMID

115
Valentine J S, Doucette P A, Zittin Potter S (2005). Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem, 74(1): 563–593

DOI PMID

116
van Brabant A J, Stan R, Ellis N A (2000). DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet, 1(1): 409–459

DOI PMID

117
van Holde K E, Miller K I, Decker H (2001). Hemocyanins and invertebrate evolution. J Biol Chem, 276(19): 15563–15566

DOI PMID

118
Waldron K J, Rutherford J C, Ford D, Robinson N J (2009). Metalloproteins and metal sensing. Nature, 460(7257): 823–830

DOI PMID

119
Wang J, Sattar A K, Wang C C, Karam J D, Konigsberg W H, Steitz T A (1997). Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell, 89(7): 1087–1099

DOI PMID

120
Wang X, Ira G, Tercero J A, Holmes A M, Diffley J F, Haber J E (2004). Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol, 24(16): 6891–6899

DOI PMID

121
Whittaker J W (2012). Non-heme manganese catalase–the 'other' catalase. Arch Biochem Biophys, 525: 111–120. Dowling D P, Di Costanzo L, Gennadios H A, Christianson D W (2008). Evolution of the arginase fold and functional diversity. Cell Mol Life Sci, 65: 2039–2055

122
Wu A J, Penner-Hahn J E, Pecoraro V L (2004). Structural, spectroscopic, and reactivity models for the manganese catalases. Chem Rev, 104(2): 903–938

DOI PMID

123
Wu C, Yan L, Depre C, Dhar S K, Shen Y T, Sadoshima J, Vatner S F, Vatner D E (2009). Cytochrome c oxidase III as a mechanism for apoptosis in heart failure following myocardial infarction. Am J Physiol Cell Physiol, 297(4): C928–C934

DOI PMID

124
Xu W, Liu L Z, Loizidou M, Ahmed M, Charles I G (2002). The role of nitric oxide in cancer. Cell Res, 12(5-6): 311–320

DOI PMID

125
Yang L, Arora K, Beard W A, Wilson S H, Schlick T (2004). Critical role of magnesium ions in DNA polymerase beta’s closing and active site assembly. J Am Chem Soc, 126(27): 8441–8453

DOI PMID

126
Yoder D W, Hwang J, Penner-Hahn J E (2000). Manganese catalases. Met Ions Biol Syst, 37: 527–557

PMID

127
Yoon E J, Park H J, Kim G Y, Cho H M, Choi J H, Park H Y, Jang J Y, Rhim H S, Kang S M (2009). Intracellular amyloid beta interacts with SOD1 and impairs the enzymatic activity of SOD1: implications for the pathogenesis of amyotrophic lateral sclerosis. Exp Mol Med, 41(9): 611–617

DOI PMID

128
Yu F, Sugawara T, Nishi T, Liu J, Chan P H (2006). Overexpression of SOD1 in transgenic rats attenuates nuclear translocation of endonuclease G and apoptosis after spinal cord injury. J Neurotrauma, 23(5): 595–603

DOI PMID

129
Zamocky M, Furtmüller P G, Obinger C (2008). Evolution of catalases from bacteria to humans. Antioxid Redox Signal, 10(9): 1527–1548

DOI PMID

130
Zhang C (2014). Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 5(10): 750–760

DOI PMID

131
Zhang C, Guo H, Zhang J, Guo G, Schumaker K S, Guo Y (2010). Arabidopsis cockayne syndrome A-like proteins 1A and 1B form a complex with CULLIN4 and damage DNA binding protein 1A and regulate the response to UV irradiation. Plant Cell, 22(7): 2353–2369

DOI PMID

132
Zhang C, Liu G, Huang M (2014a). Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition. Front Biol (Beijing), 9(2): 104–113

DOI PMID

133
Zhang C, Liu Y (2015). Targeting cancer with sesterterpenoids: the new potential antitumor drugs. J Nat Med, 69(3): 255–266

DOI PMID

134
Zhang C, Zhang F (2015a). Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell, 6(2): 88–100

DOI PMID

135
Zhang C, Zhang F (2015b). The multifunctions of WD40 proteins in genome integrity and cell cycle progression. J Genomics, 3: 40–50

DOI PMID

136
Zhang F, Zhang L, Zhang C (2015). Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies.Tumour Biol, doi:10. 1007/s13277–015–4445–4

137
Zhang Y, Li H, Zhang C, An X, Liu L, Stubbe J, Huang M (2014b). Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis. Proc Natl Acad Sci USA, 111(17): E1695–E1704

DOI PMID

138
Zhou L, Sun C B, Liu C, Fan Y, Zhu H Y, Wu X W, Hu L, Li Q P (2015). Upregulation of arginase activity contributes to intracellular ROS production induced by high glucose in H9c2 cells. Int J Clin Exp Pathol, 8(3): 2728–2736

PMID

Outlines

/