Community and hospital acquired methicillin resistant Staphylococcus aureus efficiently retain the Van A determinant
Received date: 03 Oct 2015
Accepted date: 02 Dec 2015
Published date: 26 Jan 2016
Copyright
Dissemination of vancomycin resistance from hospital to community strains is a serious threat to public health. Our study aimed to provide evidence for transmission of Van A type resistance from the hospital to the community. Wild-type community and hospital associated methicillin resistant Staphylococcus aureus strains were studied in vitro and in a model that mimicked a natural environment to ascertain their ability to acquire and maintain the vancomycin resistance determinant (Van A gene) from vancomycin resistant Enterococcus faecalis. Fitness was assessed and the cost of Van A acquisition and retention was estimated. In vitro mating experiments were carried out using a filter mating technique and a model of a natural water body environment. Transfer of resistance was carried out in two different conditions: restricted and favorable. Transconjugants were confirmed by E test and PCR using specific primer sets. Growth kinetics and fitness measurements were done by spectrometric analysis. Using the in vitro filter mating technique, high transfer frequencies that ranged from 0.7 × 10–3(0.0006) to 3.1 × 10–4(0.00011) were recorded, with the highest transfer frequencies for CA MRSA (thermosensitively homogenous) (0.7 × 10–3), and 1.2 × 10–4 to 2.4 × 10–6 in the model. HA MRSA (homogenous) showed a greater capacity (3.6 × 10–4) to receive the Van A gene, while CA MRSA showed a reduced ability to maintain the gene after serial subcultures. CA and HA thermosensitively heterogeneous MRSA transconjugants exhibited higher growth rates. The present study provides evidence for the enhanced ability of CA and HA MRSA clones to acquire and maintain Van A type resistance.
Key words: Van A resistance; MRSA; fitness; growth kinetics; resistance transfer
Anup Kainthola , Ajay B. Bhatt , Ashish Gupta . Community and hospital acquired methicillin resistant Staphylococcus aureus efficiently retain the Van A determinant[J]. Frontiers in Biology, 2015 , 10(6) : 520 -527 . DOI: 10.1007/s11515-015-1380-0
1 |
Aligholi M, Emaneini M, Jabalameli F, Shahsavan S, Dabiri H, Sedaght H (2008). Emergence of high-level vancomycin-resistant Staphylococcus aureus in the Imam Khomeini Hospital in Tehran. Med Princ Pract, 17(5): 432–434
|
2 |
Annear D I (1968). The effect of temperature on resistance of Staphylococcus aureus to methicillin and some other antibioics. Med J Aust, 1(11): 444–446
|
3 |
Arthur M, Molinas C, Depardieu F, Courvalin P (1993). Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol, 175(1): 117–127
|
4 |
Arthur M, Reynolds P, Courvalin P (1996). Glycopeptide resistance in enterococci. Trends Microbiol, 4(10): 401–407
|
5 |
Chang S, Sievert D M, Hageman J C, Boulton M L, Tenover F C, Downes F P, Shah S, Rudrik J T, Pupp G R, Brown W J, Cardo D, Fridkin S K, and the Vancomycin-Resistant Staphylococcus aureus Investigative Team (2003). Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med, 348(14): 1342–1347
|
6 |
Courvalin P (2006). Vancomycin resistance in gram-positive cocci. Clin Infect Dis, 42(Suppl 1): S25–S34
|
7 |
Cui L, Ma X, Sato K, Okuma K, Tenover F C, Mamizuka E M, Gemmell C G, Kim M N, Ploy M C, El-Solh N, Ferraz V, Hiramatsu K (2003). Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol, 41(1): 5–14
|
8 |
de la Cruz F, Davies J (2000). Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol, 8(3): 128–133
|
9 |
Ender M, McCallum N, Adhikari R, Berger-Bächi B (2004). Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob Agents Chemother, 48(6): 2295–2297
|
10 |
Farrag N, Eltringham I, Liddy H(1996).Vancomycin-dependent Enterococcus faecalis. Lancet348:1581–1582
|
11 |
Foucault M L, Courvalin P, Grillot-Courvalin C (2009). Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 53(6): 2354–2359
|
12 |
Hartman B J, Tomasz A (1986). Expression of methicillin resistance in heterogeneous strains of Staphylococcus aureus. Antimicrob Agents Chemother, 29(1): 85–92
|
13 |
Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover F C (1997). Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother, 40(1): 135–136
|
14 |
Howden B P, Davies J K, Johnson P D, Stinear T P, Grayson M L (2010). Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev, 23(1): 99–139
|
15 |
International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC) (2009). Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother, 53(12): 4961–4967
|
16 |
Kacica M,McDonald L C , and the Centers for Disease Control and Prevention (CDC) (2004). Vancomycin-resistant Staphylococcus aureus—New York, 2004. MMWR Morb Mortal Wkly Rep, 53(15): 322–323
|
17 |
Kainthola A, Bhatt A B (2013). Population based Prevalence of Community Acquired Methicillin Resistant Staphylococcus aureus in Community Settings of Srinagar Garhwal, India. RRST, 5(1): 60–62
|
18 |
Kirkpatrick B D, Harrington S M, Smith D, Marcellus D, Miller C, Dick J, Karanfil L, Perl T M (1999). An outbreak of vancomycin-dependent Enterococcus faecium in a bone marrow transplant unit. Clin Infect Dis, 29(5): 1268–1273
|
19 |
Klare I, Collatz E, Al-Obeid S, Wagner J, Rodloff AC, Witte W(1992). Glykopeptidresistenz bei Enterococcus faecium aus Besiedlungen und Infectionen von Patienten aus Intensivstationen Berliner Kliniken und einem Transplantationszentrum. ZAC Z. Antimikrob Antineoplast Chemother10:45–53.
|
20 |
Leclercq R, Derlot E, Duval J, Courvalin P (1988). Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med, 319(3): 157–161
|
21 |
Matsuo M, Hishinuma T, Katayama Y, Cui L, Kapi M, Hiramatsu K (2011). Mutation of RNA polymerase beta subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3. Antimicrob Agents Chemother, 55(9): 4188–4195
|
22 |
Miller D, Urdaneta V, Weltman A, Park S, and the Centers for Disease Control and Prevention (CDC) (2002). Vancomycin-resistant Staphylococcus aureus—Pennsylvania, 2002. MMWR Morb Mortal Wkly Rep, 51(40): 902
|
23 |
Noble W C, Virani Z, Cree R G A (1992). Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett, 72(2): 195–198
|
24 |
Noto M J, Fox P M, Archer G L (2008). Spontaneous deletion of the methicillin resistance determinant, mecA, partially compensates for the fitness cost associated with high-level vancomycin resistance in Staphylococcus aureus. Antimicrob Agents Chemother, 52(4): 1221–1229
|
25 |
Périchon B, Courvalin P (2009). VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 53(11): 4580–4587
|
26 |
Saha B, Singh A K, Ghosh A, Bal M (2008). Identification and characterization of a vancomycin-resistant Staphylococcus aureus isolated from Kolkata (South Asia). J Med Microbiol, 57(Pt 1): 72–79
|
27 |
Sievert D M, Boulton M L, Stolman G, Johnson D, Stobierski M G, Downes F P, Somsel P A, Rudrik J T, Brown W, Hafeez W, Lundstrom T, Flanagan E, Johnson R, Mitchell J, Chang S, and the Centers for Disease Control and Prevention (CDC) (2002). Staphylococcus aureus resistant to vancomycin—United States, 2002. MMWR Morb Mortal Wkly Rep, 51(26): 565–567
|
28 |
Tenover F C, Weigel L M, Appelbaum P C, McDougal L K, Chaitram J, McAllister S, Clark N, Killgore G, O’Hara C M, Jevitt L, Patel J B, Bozdogan B (2004). Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother, 48(1): 275–280
|
29 |
Uttley A H C, Collins C H, Naidoo J, George R C (1988). Vancomycin-resistant enterococci. Lancet, 1(8575-6): 57–58
|
30 |
Van Bambeke F, Chauvel M, Reynolds P E, Fraimow H S, Courvalin P (1999). Vancomycin-dependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob Agents Chemother, 43(1): 41–47
|
31 |
Weigel L M, Donlan R M, Shin D H, Jensen B, Clark N C, McDougal L K, Zhu W, Musser K A, Thompson J, Kohlerschmidt D, Dumas N, Limberger R J, Patel J B (2007). High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother, 51(1): 231–238
|
32 |
Zhu W, Clark N C, McDougal L K, Hageman J, McDonald L C, Patel J B (2008). Vancomycin-resistant Staphylococcus aureus isolates associated with Inc18-like vanA plasmids in Michigan. Antimicrob Agents Chemother, 52(2): 452–457
|
/
〈 | 〉 |