RESEARCH ARTICLE

Kinetics of the exchange reaction catalyzed by 2-amino-3- ketobutyrate CoA ligase

  • Farrukh Jamil , 1,2
Expand
  • 1. School of Biological Sciences, University of the Punjab, New Campus, Lahore 54590, Punjab, Pakistan
  • 2. Department of Biosciences, COMSATS Institute of Information Technology(CIIT), Sahiwal 57000, Punjab, Pakistan

Received date: 12 Oct 2015

Accepted date: 23 Nov 2015

Published date: 26 Jan 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

2-Amino-3-ketobutyrate CoA ligase (KBL) of Escherichia coli is a member of the α-oxoamine synthase family; it catalyzes the condensation reaction between glycine and acetyl CoA to yield 2-amino-3-ketobutyrate. We have previously shown that KBL catalyzes the exchange of pro-R hydrogen of glycine with protons in the medium; however, the kinetics of this reaction has never been determined. In this study, we calculated the kinetic parameters of this exchange reaction by using different concentrations of [2RS- 3H2: 2-14C] glycine. The rate of the exchange reaction was determined by measuring the 3H/14C ratio in recovered [2S- 3H: 2-14C]glycine. The Lineweaver-Burk plot showed that Km and kcat of this reaction were 3.8 ×10-3 M and 0.22 S-1, respectively. On the other hand, Km and kcat values of the overall KBL-mediated catalysis were correspondingly 1.23 × 10-2 M and 1.19 S-1. Thus, the rate of the exchange reaction was almost five times lower than that of overall KBL catalysis.

Cite this article

Farrukh Jamil . Kinetics of the exchange reaction catalyzed by 2-amino-3- ketobutyrate CoA ligase[J]. Frontiers in Biology, 2015 , 10(6) : 503 -507 . DOI: 10.1007/s11515-015-1378-7

Acknowledgments

I am grateful to the Higher Education Commission (HEC) of Pakistan for grants that enabled establishment of the Bioinformatics research laboratory at COMSATS, Sahiwal.
This study does not contain any experiment on human and animals by the author.
1
Alexeev D, Alexeeva M, Baxter R L, Campopiano D J, Webster S P, Sawyer L (1998). The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J Mol Biol, 284(2): 401–419

DOI PMID

2
Bashir Q, Rashid N, Akhtar M (2006). Mechanism and substrate stereochemistry of 2-amino-3-oxobutyrate CoA ligase: implications for 5-aminolevulinate synthase and related enzymes. Chem Commun (Camb), (48): 5065–5067

DOI PMID

3
Edgar A J, Polak J M (2000). Molecular cloning of the human and murine 2-amino-3-ketobutyrate coenzyme A ligase cDNAs. Eur J Biochem, 267(6): 1805–1812

DOI PMID

4
Gable K, Slife H, Bacikova D, Monaghan E, Dunn T M (2000). Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J Biol Chem, 275(11): 7597–7603

DOI PMID

5
Gibson K D, Laver W G, Neuberger A (1958). Initial stages in the biosynthesis of porphyrins. 2. The formation of delta-aminolaevulic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. Biochem J, 70(1): 71–81

DOI PMID

6
Hanada K, Hara T, Fukasawa M, Yamaji A, Umeda M, Nishijima M (1998). Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J Biol Chem, 273(50): 33787–33794

DOI PMID

7
Hanada K, Hara T, Nishijima M (2000). Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J Biol Chem, 275(12): 8409–8415

DOI PMID

8
Jamil F, Gardner Q A, Bashir Q, Rashid N, Akhtar M (2010). Mechanistic and stereochemical studies of glycine oxidase from Bacillus subtilis strain R5. Biochemistry, 49(34): 7377–7383

DOI PMID

9
Kerbarh O, Campopiano D J, Baxter R L (2006). Mechanism of -oxoamine synthases: identification of the intermediate Claisen product in the 8-amino-7-oxononanoate synthase reaction. Chem. Comm, 60–62

10
Marcus J P, Dekker E E (1993). Threonine formation via the coupled activity of 2-amino-3-ketobutyrate coenzyme A lyase and threonine dehydrogenase. J Bacteriol, 175(20): 6505–6511

PMID

11
Mukherjee J J, Dekker E E (1987). Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme. J Biol Chem, 262(30): 14441–14447

PMID

12
Ploux O, Marquet A (1996). Mechanistic studies on the 8-amino-7-oxopelargonate synthase, a pyridoxal-5′-phosphate-dependent enzyme involved in biotin biosynthesis. Eur J Biochem, 236(1): 301–308

DOI PMID

13
Riddle R D, Yamamoto M, Engel J D (1989). Expression of d-aminolevulinate synthase in avian cells: separate genes encode erythroid-specific and nonspecific isozymes. Proc Natl Acad Sci USA, 86(3): 792–796

DOI PMID

14
Schmidt A, Sivaraman J, Li Y, Larocque R, Barbosa J A, Smith C, Matte A, Schrag J D, Cygler M (2001). Three-dimensional structure of 2-amino-3-ketobutyrate CoA ligase from Escherichia coli complexed with a PLP-substrate intermediate: inferred reaction mechanism. Biochemistry, 40(17): 5151–5160

DOI PMID

Outlines

/