RESEARCH ARTICLE

Comparative analysis of panicle proteomes of two upland rice varieties upon hyper-osmotic stress

  • Wei HUANG ,
  • Ting BI ,
  • Weining SUN
Expand
  • SIBS–UC (Berkeley) Center of Molecular Life Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Shanghai 200032, China

Received date: 29 Jun 2010

Accepted date: 28 Jul 2010

Published date: 01 Dec 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Drought is a major environmental factor that limits the yield of rice dramatically. Upland rice is now regarded as a promising rice cultivar in water saving agriculture. Two varieties of upland rice Zhonghan 3 and IR29 were used to compare the physiological and proteomic responses to hyper-osmotic stress induced by 15% polyethyleneglycol (PEG) at the reproductive stage. Osmotic stress affected the growth development and caused the loss of production especially the grain yield. IR29 was more tolerant to PEG than Zhonghan 3 as shown by less yield loss under osmotic stress conditions. Comparative proteomic analysis of the panicle suggested that the up-regulation of glycolysis related proteins and defense proteins may contribute to the better osmotic tolerance in IR29.

Cite this article

Wei HUANG , Ting BI , Weining SUN . Comparative analysis of panicle proteomes of two upland rice varieties upon hyper-osmotic stress[J]. Frontiers in Biology, 2010 , 5(6) : 546 -555 . DOI: 10.1007/s11515-010-0720-3

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (No. 2007AA100603), the International Science & Technology Cooperation Program of China (No. 2010DFA91930) and a project from the Ministry of Agriculture of China for transgenic research (No. 2008ZX08009).
1
Abbasi F M, Komatsu S (2004). A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics, 4(7): 2072-2081

DOI

2
Agrawal G K, Rakwal R (2006). Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom Rev, 25(1): 1-53

DOI

3
Bernier J, Atlin G N, Serraj R, Kumar A, Spaner D (2008). Breeding upland rice for drought resistance. J Sci Food Agric, 88(6): 927-939

DOI

4
Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007). A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci, 47(2): 507-516

DOI

5
Del Buono D, Prinsi B, Espen L, Scarponi L (2009). Triosephosphate isomerases in Italian ryegrass (Lolium multiflorum ): characterization and susceptibility to herbicides. J Agric Food Chem, 57(17): 7924-7930

DOI

6
Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001). The glycine decarboxylase system: a fascinating complex. Trends Plant Sci, 6(4): 167-176

DOI

7
Jiang C J, Shoji K, Matsuki R, Baba A, Inagaki N, Ban H, Iwasaki T, Imamoto N, Yoneda Y, Deng X W, Yamamoto N (2001). Molecular cloning of a novel importin alpha homologue from rice, by which constitutive photomorphogenic 1 (COP1) nuclear localization signal (NLS)-protein is preferentially nuclear imported. J Biol Chem, 276(12): 9322-9329

DOI

8
Johansson H, Sterky F, Amini B, Lundeberg J, Kleczkowski L A (2002). Molecular cloning and characterization of a cDNA encoding poplar UDP-glucose dehydrogenase, a key gene of hemicellulose/pectin formation. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1576: 53-58

9
Jubault M, Hamon C, Gravot A, Lariagon C, Delourme R, Bouchereau A, Manzanares-Dauleux M J (2008). Differential regulation of root arginine catabolism and polyamine metabolism in clubroot-susceptible and partially resistant Arabidopsis genotypes. Plant Physiol, 146(4): 2008-2019

DOI

10
Király Z (1998). Plant infection-biotic stress. Ann N Y Acad Sci, 851(STRESS OF LIFE: FROM MOLECULES TO MAN): 233-240

11
Liu G L, Mei H W, Yu X Q, Zou G H, Liu H Y, Li M S, Chen L, Wu J H, Luo L J (2007). Panicle water potential, a physiological trait to identify drought tolerance in rice. J Integr Plant Biol, 49(10): 1464-1469

DOI

12
Liu H Y, Mei H W, Yu X Q, Zou G H, Liu G L, Luo L J (2006). Towards improving the drought tolerance of rice in China. Plant Genetic Resources, 4(1): 47-53

DOI

13
Lu Z, Liu D, Liu S (2007). Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep, 26(10): 1909-1917

DOI

14
Lu Z, Neumann P M (1999). Water stress inhibits hydraulic conductance and leaf growth in rice seedlings but not the transport of water via mercury-sensitive water channels in the root. Plant Physiol, 120(1): 143-152

DOI

15
Peng Z Y, Wang M C, Li F, Lv H J, Li C L, Xia G M (2009). A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics, 8(12): 2676-2686

DOI

16
Pillai M A, Lihuang Z, Akiyama T (2002). Molecular cloning, characterization, expression and chromosomal location of OsGAPDH, a submergence responsive gene in rice (Oryza sativa L.). Theor Appl Genet, 105(1): 34-42

DOI

17
Rabello A R, Guimarães C M, Rangel P H, da Silva F R, Seixas D, de Souza E, Brasileiro A C, Spehar C R, Ferreira M E, Mehta A (2008). Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). BMC Genomics, 9(1): 485

DOI

18
Riccardi F, Gazeau P, Zivy Mde Vienne D, Zivy M (1998). Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol, 117(4): 1253-1263

DOI

19
Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J (2002). A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res, 76(2-3): 199-219

DOI

20
Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002). Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 53(372): 1305-1319

DOI

21
Singla-Pareek S L, Yadav S K, Pareek A, Reddy M K, Sopory S K (2006). Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol, 140(2): 613-623

DOI

22
Smirnoff N (1998). Plant resistance to environmental stress. Curr Opin Biotechnol, 9(2): 214-219

DOI

23
Sun Z X, Cheng S H, Si H MZongxiu S, Shihua C, Huamin S (1993). Determination of critical temperatures and panicle development stage for fertility change of thermo-sensitive genic male sterile rice line '5460S'. Euphytica, 67(1-2): 27-33

24
Suzuki K, Watanabe K, Masumura T, Kitamura S (2004). Characterization of soluble and putative membrane-bound UDP-glucuronic acid decarboxylase (OsUXS) isoforms in rice. Arch Biochem Biophys, 431(2): 169-177

DOI

25
Suzuki M, Hashioka A, Munyra T, Ashihara H (2005). Salt stress and glycolytic regulation in suspension-cultured cells of the mangrove tree, Bruguiera sexangula. Physiol Plant,123(3): 246-253

DOI

26
Taylor N L, Day D A, Millar A H (2002). Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J Biol Chem, 277(45): 42663-42668

DOI

27
Thornalley P J (1990). The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J, 269(1): 1-11

28
Vauclare P, Diallo N, Bourguignon J, Macherel D, Douce R (1996). Regulation of the expression of the glycine decarboxylase complex during pea leaf development. Plant Physiol, 112(4): 1523-1530

29
Venuprasad R, Lafitte H R, Atlin G N (2007). Response to direct selection for grain yield under drought stress in rice. Crop Sci, 47(1): 285-293

DOI

30
Xiao X, Yang Y, Yang Y, Lin J, Tang D, Liu X (2009). Comparative analysis of young panicle proteome in thermo-sensitive genic male-sterile rice Zhu-1S under sterile and fertile conditions. Biotechnol Lett, 31(1): 157-161

DOI

31
Xie J H, Zapata-Arias F J, Shen M, Afza R (2000). Salinity tolerant performance and genetic diversity of four rice varieties. Euphytica, 116(2): 105-110

DOI

32
Yadav S K, Singla-Pareek S L, Ray M, Reddy M K, Sopory S K (2005a). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun, 337(1): 61-67

DOI

33
Yadav S K, Singla-Pareek S L, Reddy M K, Sopory S K (2005b). Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett, 579(27): 6265-6271

DOI

34
Yan S P, Tang Z C, Su W A, Sun W N (2005). Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 5(1): 235-244

DOI

35
Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics, 5(3): 484-496

DOI

36
Yang S L, Lan S S, Gong M (2009). Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol, 166(15): 1694-1699

DOI

37
Yue B, Xue W Y, Xiong L Z, Yu X Q, Luo L J, Cui K H, Jin D M, Xing Y Z, Zhang Q F (2006). Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics, 172(2): 1213-1228

DOI

38
Zang X, Komatsu S (2007). A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry, 68(4): 426-437

DOI

39
Zhang Q S, Shirley N, Lahnstein J, Fincher G B (2005). Characterization and expression patterns of UDP-D-glucuronate decarboxylase genes in barley. Plant Physiol, 138(1): 131-141

DOI

Outlines

/