Received date: 18 Apr 2015
Accepted date: 10 Jun 2015
Published date: 14 Aug 2015
Copyright
MicroRNAs (miRNAs) are 19-24 nucleotide non-coding ribonucleic acids binding DNA or RNA and controlling gene expression via mRNA degradation or its transcription inhibition. Erythropoies is a multi step differentiation process of erythroid progenitors to nucleate red blood cells. Maturation, proliferation and differentiation of red blood cells is affected by erythroid factors, signaling pathways in niche of hematopoietic cells, transcription factors as well as miRNAs. Expression of different types of miRNAs during erythroid development provides a background for the study of these molecules to control erythroid differentiation and maturation as well as their use as diagnostic and prognostic markers to treat erythroid disorders like thalassemia, sickle cell disease and erythrocyte enzyme deficiencies. In this paper, with reference to biosynthesis of miRNAs, their function in normal and anemic erythropoiesis has been investigated. The target molecule of each of these miRNAs has been cited in an attempt to elucidate their role in erythropoiesis.
Key words: miRNA; erythropoiesis; red blood cell
Javad Mohammdai-asl , Abolfazl Ramezani , Fatemeh Norozi , Amal Saki Malehi , Ali Amin Asnafi , Mohammad Ali Jalali Far , Seyed Hadi Mousavi , Najmaldin Saki . MicroRNAs in erythropoiesis and red blood cell disorders[J]. Frontiers in Biology, 2015 , 10(4) : 321 -332 . DOI: 10.1007/s11515-015-1365-z
12 |
Aalto A P, Pasquinelli A E (2012). Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol, 24(3): 333–340
|
6 |
Aerbajinai W, Giattina M, Lee Y T, Raffeld M, Miller J L (2003). The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood, 102(2): 712–717
|
43 |
Andolfo I, De Falco L, Asci R, Russo R, Colucci S, Gorrese M, Zollo M, Iolascon A(2010). Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica, 95(8): 1244–1252
|
28 |
Azzouzi I, Schmugge M, Speer O (2012). MicroRNAs as components of regulatory networks controlling erythropoiesis. Eur J Haematol, 89(1): 1–9
|
54 |
Bakker W J, Blázquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H, Coffer P J, Löwenberg B, von Lindern M, van Dijk T B (2004). FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol, 164(2): 175–184
|
103 |
Bakker W J, van Dijk T B, Parren-van Amelsvoort M, Kolbus A, Yamamoto K, Steinlein P, Verhaak R G, Mak T W, Beug H, Löwenberg B, von Lindern M (2007). Differential regulation of Foxo3a target genes in erythropoiesis. Mol Cell Biol, 27(10): 3839–3854
|
55 |
Baltimore D, Boldin M P, O’Connell R M, Rao D S, Taganov K D (2008). MicroRNAs: new regulators of immune cell development and function. Nat Immunol, 9(8): 839–845
|
90 |
Bank A (2006). Regulation of human fetal hemoglobin: new players, new complexities. Blood, 107(2): 435–443
|
88 |
Basu P, Lung T K, Lemsaddek W, Sargent T G, Williams D C Jr, Basu M, Redmond L C, Lingrel J B, Haar J L, Lloyd J A (2007). EKLF and KLF2 have compensatory roles in embryonic β-globin gene expression and primitive erythropoiesis. Blood, 110(9): 3417–3425
|
110 |
Bianchi E, Zini R, Salati S, Tenedini E, Norfo R, Tagliafico E, Manfredini R, Ferrari S (2010). c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression. Blood, 116(22): e99–e110
|
37 |
Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R (2012). Involvement of miRNA in erythroid differentiation. Epigenomics, 4(1): 51–65
|
48 |
Bianchi N, Zuccato C, Lampronti I, Borgatti M, Gambari R (2009). Expression of miR-210 during erythroid differentiation and induction of gamma-globin gene expression. BMB Rep, 42(8): 493–499
|
7 |
Bracht J R, Van Wynsberghe P M, Mondol V, Pasquinelli A E (2010). Regulation of lin-4 miRNA expression, organismal growth and development by a conserved RNA binding protein in C. elegans. Dev Biol, 348(2): 210–221
|
106 |
Bruchova H, Merkerova M, Prchal J T ( 2008). Aberrant expression of microRNA in polycythemia vera. Haematologica. 93(7): 1009–1016
|
17 |
Bruchova H, Yoon D, Agarwal A M, Mendell J, Prchal J T (2007). Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol, 35(11): 1657–1667
|
3 |
Bruchova H, Yoon D, Agarwal A M, Swierczek S, Prchal J T (2009). Erythropoiesis in polycythemia vera is hyper-proliferative and has accelerated maturation. Blood Cells Mol Dis, 43(1): 81–87
|
66 |
Bruchova-Votavova H, Yoon D, Prchal J T (2010). miR-451 enhances erythroid differentiation in K562 cells. Leuk Lymphoma, 51(4): 686–693
|
78 |
Buccheri M A, Spina S, Ruberto C, Lombardo T, Labie D, Ragusa A A (2013). Annotated definition of BCL11A and HMIP-2 haplotypes through the analysis of sicilian β-thalassemia patients with high levels of fetal hemoglobin. Hemoglobin, 37(5): 423–434
|
39 |
Byon J C, Papayannopoulou T (2012). MicroRNAs: Allies or foes in erythropoiesis? J Cell Physiol, 227(1): 7–13
|
1 |
Cantor A B, Orkin S H (2002). Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene, 21(21): 3368–3376
|
86 |
Centis F, Tabellini L, Lucarelli G, Buffi O, Tonucci P, Persini B, Annibali M, Emiliani R, Iliescu A, Rapa S, Rossi R, Ma L, Angelucci E, Schrier S L (2000). The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood, 96(10): 3624–3629
|
68 |
Cheloufi S, Dos Santos C O, Chong M M, Hannon G J (2010). A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature, 465(7298): 584–589
|
21 |
Chen S Y, Wang Y, Telen M J, Chi J T (2008). The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS ONE, 3(6): e2360
|
16 |
Choong M L, Yang H H, McNiece I (2007). MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol, 35(4): 551–564
|
107 |
Davis M, Clarke S (2013). Influence of microRNA on the maintenance of human iron metabolism. Nutrients, 5(7): 2611–2628
|
63 |
Dore L C, Amigo J D, Dos Santos C O, Zhang Z, Gai X, Tobias J W, Yu D, Klein A M, Dorman C, Wu W, Hardison R C, Paw B H, Weiss M J (2008). A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA, 105(9): 3333–3338
|
11 |
Fabbri M, Garzon R, Andreeff M, Kantarjian H M, Garcia-Manero G, Calin G A (2008). MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia, 22(6): 1095–1105
|
95 |
Fard A D, Hosseini S A, Shahjahani M, Salari F, Jaseb K (2013). Evaluation of novel fetal hemoglobin inducer drugs in treatment of β-hemoglobinopathy disorders. Int J Hematol Oncol Stem Cell Res, 7(3): 47–54
|
20 |
Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin G A, Liu C G, Sorrentino A, Croce C M, Peschle C (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA, 102(50): 18081–18086
|
40 |
Felli N, Pedini F, Romania P, Biffoni M, Morsilli O, Castelli G, Santoro S, Chicarella S, Sorrentino A, Peschle C, Marziali G (2009). MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. haematologica. Haematologica, 94(4): 479–86
|
60 |
Ferreira R, Ohneda K, Yamamoto M, Philipsen S (2005). GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol, 25(4): 1215–1227
|
33 |
Fu Y F, Du T T, Dong M, Zhu K Y, Jing C B, Zhang Y, Wang L, Fan H B, Chen Y, Jin Y, Yue G P, Chen S J, Chen Z, Huang Q H, Jing Q, Deng M, Liu T X (2009). Mir-144 selectively regulates embryonic α-hemoglobin synthesis during primitive erythropoiesis. Blood, 113(6): 1340–1349
|
26 |
García P, Frampton J (2008). Hematopoietic lineage commitment: miRNAs add specificity to a widely expressed transcription factor. Dev Cell, 14(6): 815–816
|
73 |
Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R, Volinia S, Bhatt D, Alder H, Marcucci G, Calin G A, Liu C G, Bloomfield C D, Andreeff M, Croce C M (2006). MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA, 103(13): 5078–5083
|
112 |
Grebien F, Kerenyi M A, Kovacic B, Kolbe T, Becker V, Dolznig H, Pfeffer K, Klingmüller U, Müller M, Beug H, Müllner E W, Moriggl R (2008). Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2. Blood, 111(9): 4511–4522
|
14 |
Guerau-de-Arellano M, Alder H, Ozer H G, Lovett-Racke A, Racke M K (2012). miRNA profiling for biomarker discovery in multiple sclerosis: from microarray to deep sequencing. J Neuroimmunol, 248(1-2): 32–39
|
92 |
Guglielmelli P, Tozzi L, Bogani C, Iacobucci I, Ponziani V, Martinelli G, Bosi A, Vannucchi A M, and the AGIMM (AIRC-Gruppo Italiano Malattie Mieloproliferative) Investigators (2011). Overexpression of microRNA-16-2 contributes to the abnormal erythropoiesis in polycythemia vera. Blood, 117(25): 6923–6927
|
58 |
Hansson A, Zetterblad J, van Duren C, Axelson H, Jönsson J I (2007). The Lim-only protein LMO2 acts as a positive regulator of erythroid differentiation. Biochem Biophys Res Commun, 364(3): 675–681
|
18 |
Hattangadi S M, Wong P, Zhang L, Flygare J, Lodish H F (2011). From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood, 118(24): 6258–6268
|
29 |
Havelange V, Garzon R (2010). MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol, 85(12): 935–942
|
79 |
Higgs D R, Garrick D, Anguita E, De Gobbi M, Hughes J, Muers M, Vernimmen D, Lower K, Law M, Argentaro A, Deville M A, Gibbons R (2005). Understanding α-globin gene regulation: Aiming to improve the management of thalassemia. Ann N Y Acad Sci, 1054(1): 92–102
|
81 |
Hilliard L M, Berkow R L (1996). The thalassemia syndromes. Prim Care Update Ob Gyns, 3(5): 157–162
|
31 |
Huang X, Gschweng E, Van Handel B, Cheng D, Mikkola H K, Witte O N (2011). Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells. Blood, 117(7): 2157–2165
|
97 |
Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem, 275(21): 16023–16029
|
104 |
James C (2008). The JAK2V617F mutation in polycythemia vera and other myeloproliferative disorders: one mutation for three diseases? Hematology (Am Soc Hematol Educ Program), 2008(1): 69–75
|
9 |
Kandhavelu M, Kandhavelu J (2012). pre-piRNA biogenesis mimics the pathway of miRNA. Biochem Syst Ecol, 43: 200–204
|
13 |
Karius T, Schnekenburger M, Dicato M, Diederich M (2012). MicroRNAs in cancer management and their modulation by dietary agents. Biochem Pharmacol, 83(12): 1591–1601
|
70 |
Kim M, Tan Y S, Cheng W C, Kingsbury T J, Heimfeld S, Civin C I (2014). MIR144 and MIR451 regulate human erythropoiesis via RAB14. Br J Haematol, 168(4): 583–597
|
2 |
Kim S I, Bresnick E H (2007). Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene, 26(47): 6777–6794
|
38 |
Kosaka N, Sugiura K, Yamamoto Y, Yoshioka Y, Miyazaki H, Komatsu N, Ochiya T, Kato T (2008). Identification of erythropoietin-induced microRNAs in haematopoietic cells during erythroid differentiation. Br J Haematol, 142(2): 293–300
|
41 |
Lawrie C H (2010). microRNA expression in erythropoiesis and erythroid disorders. Br J Haematol, 150(2): 144–151
|
99 |
Lee J M, Johnson J A (2004). An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol, 37(2): 139–143
|
5 |
Leonard M, Brice M, Engel J D, Papayannopoulou T (1993). Dynamics of GATA transcription factor expression during erythroid differentiation. Blood, 82(4): 1071–1079
|
105 |
Levine R L, Gilliland D G (2008). Myeloproliferative disorders. Blood, 112(6): 2190–2198
|
44 |
Listowski M A, Heger E, Bogusławska D M, Machnicka B, Kuliczkowski K, Leluk J, Sikorski A F (2013). microRNAs: fine tuning of erythropoiesis. Cell Mol Biol Lett, 18(1): 34–46
|
87 |
Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U, Giuliani A, Marziali G (2013). MicroRNA-486-3p regulates g-globin expression in human erythroid cells by directly modulating BCL11A. PLoS ONE, 8(4): e60436
|
80 |
Maniatis T, Fritsch E F, Lauer J, Lawn R M (1980). The molecular genetics of human hemoglobins. Annu Rev Genet, 14(1): 145–178
|
34 |
Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T (2007). Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun, 364(3): 509–514
|
85 |
Mathias L A, Fisher T C, Zeng L, Meiselman H J, Weinberg K I, Hiti A L, Malik P (2000). Ineffective erythropoiesis in β-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp Hematol, 28(12): 1343–1353
|
109 |
Melotti P, Calabretta B (1996). Induction of hematopoietic commitment and erythromyeloid differentiation in embryonal stem cells constitutively expressing c-myb. Blood, 87(6): 2221–2234
|
65 |
Merkerova M, Belickova M, Bruchova H (2008). Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol, 81(4): 304–310
|
22 |
Moritz K M, Lim G B, Wintour E M (1997). Developmental regulation of erythropoietin and erythropoiesis. Am J Physiol, 273(6 Pt 2): R1829–R1844
|
98 |
Motohashi H, Yamamoto M (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med, 10(11): 549–557
|
52 |
Munugalavadla V, Kapur R (2005). Role of c-Kit and erythropoietin receptor in erythropoiesis. Crit Rev Oncol Hematol, 54(1): 63–75
|
91 |
Noh S J, Miller S H, Lee Y T, Goh S H, Marincola F M, Stroncek D F, Reed C, Wang E, Miller J L (2009). Let-7 microRNAs are developmentally regulated in circulating human erythroid cells. J Transl Med, 7(1): 98
|
67 |
O’Carroll D, Mecklenbrauker I, Das P P, Santana A, Koenig U, Enright A J, Miska E A, Tarakhovsky A (2007). A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev, 21(16): 1999–2004
|
35 |
O’Connell R M, Rao D S, Chaudhuri A A, Boldin M P, Taganov K D, Nicoll J, Paquette R L, Baltimore D (2008). Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med, 205(3): 585–594
|
23 |
Palis J (2008). Ontogeny of erythropoiesis. Curr Opin Hematol, 15(3): 155–161
|
108 |
Palis J (2014). Primitive and definitive erythropoiesis in mammals. Front Physiol, 5: 3
|
82 |
Papayannopoulou T, Kalmantis T, Stamatoyannopoulos G (1979). Cellular regulation of hemoglobin switching: evidence for inverse relationship between fetal hemoglobin synthesis and degree of maturity of human erythroid cells. Proc Natl Acad Sci USA, 76(12): 6420–6424
|
32 |
Pase L, Layton J E, Kloosterman W P, Carradice D, Waterhouse P M, Lieschke G J (2009). miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood, 113(8): 1794–1804
|
101 |
Patrick D M, Zhang C C, Tao Y, Yao H, Qi X, Schwartz R J, Jun-Shen Huang L, Olson E N (2010). Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3z. Genes Dev, 24(15): 1614–1619
|
83 |
Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu C G, Rassenti L, Calin G A, Hagan J P, Kipps T, Croce C M (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res, 66(24): 11590–11593
|
62 |
Rasmussen K D, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, Horos R, Von Lindern M, Enright A J, O’Carroll D (2010). The miR-144/451 locus is required for erythroid homeostasis. J Exp Med, 207(7): 1351–1358
|
15 |
Saki N, Abroun S, Soleimani M, Hajizamani S, Shahjahani M, Kast R E, Mortazavi Y (2015). Involvement of microRNA in t-cell differentiation and malignancy. Int J Hematol Oncol Stem Cell Res, 9(1): 33–49
|
96 |
Sangokoya C, Telen M J, Chi J T (2010). microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood, 116(20): 4338–4348
|
94 |
Sankaran V G (2011). Targeted therapeutic strategies for fetal hemoglobin induction. Hematology (Am Soc Hematol Educ Program), 2011(1): 459–465
|
49 |
Sarakul O, Vattanaviboon P, Tanaka Y, Fucharoen S, Abe Y, Svasti S, Umemura T (2013). Enhanced erythroid cell differentiation in hypoxic condition is in part contributed by miR-210. Blood Cells Mol Dis, 51(2): 98–103
|
24 |
Shiozaki M, Sakai R, Tabuchi M, Nakamura T, Sugino K, Sugino H, Eto Y (1992). Evidence for the participation of endogenous activin A/erythroid differentiation factor in the regulation of erythropoiesis. Proc Natl Acad Sci USA, 89(5): 1553–1556
|
93 |
Shivdasani R A (2006). MicroRNAs: regulators of gene expression and cell differentiation. Blood, 108(12): 3646–3653
|
4 |
Silva M, Benito A, Sanz C, Prosper F, Ekhterae D, Nuñez G, Fernandez-Luna J L (1999). Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem, 274(32): 22165–22169
|
89 |
Stamatoyannopoulos G (2005). Control of globin gene expression during development and erythroid differentiation. Exp Hematol, 33(3): 259–271
|
69 |
Stenmark H (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol, 10(8): 513–525
|
46 |
Sturgeon C M, Chicha L, Ditadi A, Zhou Q, McGrath K E, Palis J, Hammond S M, Wang S, Olson E N, Keller G (2012). Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells. Dev Cell, 23(1): 45–57
|
64 |
Svasti S, Masaki S, Penglong T, Abe Y, Winichagoon P, Fucharoen S, Umemura T (2010). Expression of microRNA-451 in normal and thalassemic erythropoiesis. Ann Hematol, 89(10): 953–958
|
77 |
Tsiftsoglou A S, Vizirianakis I S, Strouboulis J (2009). Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life, 61(8): 800–830
|
8 |
Valencia-Sanchez M A, Liu J, Hannon G J, Parker R (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 20(5): 515–524
|
53 |
van de Loosdrecht A A, Vellenga E (2000). Myelodysplasia and apoptosis: new insights into ineffective erythropoiesis. Med Oncol, 17(1): 16–21
|
19 |
Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J (2010). The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol, 84(1): 1–16
|
57 |
Wadman I A, Osada H, Grütz G G, Agulnick A D, Westphal H, Forster A, Rabbitts T H (1997). The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J, 16(11): 3145–3157
|
100 |
Walker A L, Steward S, Howard T A, Mortier N, Smeltzer M, Wang Y D, Ware R E (2011). Epigenetic and molecular profiles of erythroid cells after hydroxyurea treatment in sickle cell anemia. Blood, 118(20): 5664–5670
|
59 |
Wall L, deBoer E, Grosveld F (1988). The human beta-globin gene 3′ enhancer contains multiple binding sites for an erythroid-specific protein. Genes Dev, 2(9): 1089–1100
|
42 |
Wang F, Yu J, Yang G H, Wang X S, Zhang J W (2011). Regulation of erythroid differentiation by miR-376a and its targets. Cell Res, 21(8): 1196–1209
|
71 |
Wang F, Zhu Y, Guo L, Dong L, Liu H, Yin H, Zhang Z, Li Y, Liu C, Ma Y, Song W, He A, Wang Q, Wang L, Zhang J, Li J, Yu J (2013). A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis. Nucleic Acids Res, 42(1): 442–457
|
75 |
Wang L, Li L, Chu S, Shiang K, Li M, Sun H, Xu J, Xiao F J, Sun G, Rossi J J, Ho Y, Bhatia R (2014). MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood, 125(8):1302–1303
|
30 |
Wang Q, Huang Z, Xue H, Jin C, Ju X L, Han J D J, Chen Y G (2008). MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood, 111(2): 588–595
|
56 |
Warren A J, Colledge W H, Carlton M B, Evans M J, Smith A J, Rabbitts T H (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell, 78(1): 45–57
|
61 |
Welch J J, Watts J A, Vakoc C R, Yao Y, Wang H, Hardison R C, Blobel G A, Chodosh L A, Weiss M J (2004). Global regulation of erythroid gene expression by transcription factor GATA-1. Blood, 104(10): 3136–3147
|
51 |
Williams D E, Eisenman J, Baird A, Rauch C, Van Ness K, March C J, Park L S, Martin U, Mochizuki D Y, Boswell H S, Burgess G S, Cosman D, Lyman S D (1990). Identification of a ligand for the c-kit proto-oncogene. Cell, 63(1): 167–174
|
25 |
Wu H, Liu X, Jaenisch R, Lodish H F (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 83(1): 59–67
|
47 |
Xu M J, Sui X, Zhao R, Dai C, Krantz S B, Zhao Z J (2003). PTP-MEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. Blood, 102(13): 4354–4360
|
45 |
Xu R H, Sampsell-Barron T L, Gu F, Root S, Peck R M, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson J A (2008). NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 3(2): 196–206
|
10 |
Yang J S, Lai E C (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell, 43(6): 892–903
|
102 |
Yu D, dos Santos C O, Zhao G, Jiang J, Amigo J D, Khandros E, Dore L C, Yao Y, D’Souza J, Zhang Z, Ghaffari S, Choi J, Friend S, Tong W, Orange J S, Paw B H, Weiss M J (2010). miR-451 protects against erythroid oxidant stress by repressing 14-3-3z. Genes Dev, 24(15): 1620–1633
|
84 |
Yuan J, Angelucci E, Lucarelli G, Aljurf M, Snyder L M, Kiefer C R, Ma L, Schrier S L (1993). Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta-thalassemia (Cooley’s anemia). Blood, 82(2): 374–377
|
76 |
Zhai P F, Wang F, Su R, Lin H S, Jiang C L, Yang G H, Yu J, Zhang J W (2014). The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Biol Chem, 289(33): 22600–22613
|
50 |
Zhan M, Miller C P, Papayannopoulou T, Stamatoyannopoulos G, Song C Z (2007). MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol, 35(7): 1015–1025
|
36 |
Zhang L, Flygare J, Wong P, Lim B, Lodish H F (2011). miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev, 25(2): 119–124
|
27 |
Zhang L, Sankaran V G, Lodish H F (2012). MicroRNAs in erythroid and megakaryocytic differentiation and megakaryocyte-erythroid progenitor lineage commitment. Leukemia, 26(11): 2310–2316
|
74 |
Zhao H, Kalota A, Jin S, Gewirtz A M (2009). The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood, 113(3): 505–516
|
111 |
Zhou D, Liu K, Sun C W, Pawlik K M, Townes T M (2010). KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet, 42(9): 742–744
|
72 |
Zhu Y, Wang D, Wang F, Li T, Dong L, Liu H, Ma Y, Jiang F, Yin H, Yan W, Luo M, Tang Z, Zhang G, Wang Q, Zhang J, Zhou J, Yu J (2013). A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis. Nucleic Acids Res, 41(7): 4129–4143
|
/
〈 | 〉 |