REVIEW

MicroRNAs in erythropoiesis and red blood cell disorders

  • Javad Mohammdai-asl 1 ,
  • Abolfazl Ramezani 2 ,
  • Fatemeh Norozi 2 ,
  • Amal Saki Malehi 3 ,
  • Ali Amin Asnafi 2 ,
  • Mohammad Ali Jalali Far 2 ,
  • Seyed Hadi Mousavi 4 ,
  • Najmaldin Saki , 2
Expand
  • 1. Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • 2. Healthresearch Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • 3. Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • 4. Hematology Department Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran

Received date: 18 Apr 2015

Accepted date: 10 Jun 2015

Published date: 14 Aug 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

MicroRNAs (miRNAs) are 19-24 nucleotide non-coding ribonucleic acids binding DNA or RNA and controlling gene expression via mRNA degradation or its transcription inhibition. Erythropoies is a multi step differentiation process of erythroid progenitors to nucleate red blood cells. Maturation, proliferation and differentiation of red blood cells is affected by erythroid factors, signaling pathways in niche of hematopoietic cells, transcription factors as well as miRNAs. Expression of different types of miRNAs during erythroid development provides a background for the study of these molecules to control erythroid differentiation and maturation as well as their use as diagnostic and prognostic markers to treat erythroid disorders like thalassemia, sickle cell disease and erythrocyte enzyme deficiencies. In this paper, with reference to biosynthesis of miRNAs, their function in normal and anemic erythropoiesis has been investigated. The target molecule of each of these miRNAs has been cited in an attempt to elucidate their role in erythropoiesis.

Cite this article

Javad Mohammdai-asl , Abolfazl Ramezani , Fatemeh Norozi , Amal Saki Malehi , Ali Amin Asnafi , Mohammad Ali Jalali Far , Seyed Hadi Mousavi , Najmaldin Saki . MicroRNAs in erythropoiesis and red blood cell disorders[J]. Frontiers in Biology, 2015 , 10(4) : 321 -332 . DOI: 10.1007/s11515-015-1365-z

Acknowledgements

This paper is issued from thesis of Abolfazl Ramezani, MSc student of hematology and blood banking. This work was financially supported by grant IR.AJUMS.REC. TH93/15 from vice chancellor for Research Affairs of Ahvaz Jundishapur University of Medical Sciences.
Javad Mohammdai-asl, Abolfazl Ramezani, Fatemeh Norozi, Amal Saki Malehi, Ali Amin Asnafi, Mohammad Ali Jalali Far, Seyed Hadi Mousavi, Najmaldin Saki declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.
12
Aalto A P, Pasquinelli A E (2012). Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol, 24(3): 333–340

DOI PMID

6
Aerbajinai W, Giattina M, Lee Y T, Raffeld M, Miller J L (2003). The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood, 102(2): 712–717

DOI PMID

43
Andolfo I, De Falco L, Asci R, Russo R, Colucci S, Gorrese M, Zollo M, Iolascon A(2010). Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica, 95(8): 1244–1252

28
Azzouzi I, Schmugge M, Speer O (2012). MicroRNAs as components of regulatory networks controlling erythropoiesis. Eur J Haematol, 89(1): 1–9

DOI PMID

54
Bakker W J, Blázquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H, Coffer P J, Löwenberg B, von Lindern M, van Dijk T B (2004). FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol, 164(2): 175–184

DOI PMID

103
Bakker W J, van Dijk T B, Parren-van Amelsvoort M, Kolbus A, Yamamoto K, Steinlein P, Verhaak R G, Mak T W, Beug H, Löwenberg B, von Lindern M (2007). Differential regulation of Foxo3a target genes in erythropoiesis. Mol Cell Biol, 27(10): 3839–3854

DOI PMID

55
Baltimore D, Boldin M P, O’Connell R M, Rao D S, Taganov K D (2008). MicroRNAs: new regulators of immune cell development and function. Nat Immunol, 9(8): 839–845

DOI PMID

90
Bank A (2006). Regulation of human fetal hemoglobin: new players, new complexities. Blood, 107(2): 435–443

DOI PMID

88
Basu P, Lung T K, Lemsaddek W, Sargent T G, Williams D C Jr, Basu M, Redmond L C, Lingrel J B, Haar J L, Lloyd J A (2007). EKLF and KLF2 have compensatory roles in embryonic β-globin gene expression and primitive erythropoiesis. Blood, 110(9): 3417–3425

DOI PMID

110
Bianchi E, Zini R, Salati S, Tenedini E, Norfo R, Tagliafico E, Manfredini R, Ferrari S (2010). c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression. Blood, 116(22): e99–e110

DOI PMID

37
Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R (2012). Involvement of miRNA in erythroid differentiation. Epigenomics, 4(1): 51–65

DOI PMID

48
Bianchi N, Zuccato C, Lampronti I, Borgatti M, Gambari R (2009). Expression of miR-210 during erythroid differentiation and induction of gamma-globin gene expression. BMB Rep, 42(8): 493–499

DOI PMID

7
Bracht J R, Van Wynsberghe P M, Mondol V, Pasquinelli A E (2010). Regulation of lin-4 miRNA expression, organismal growth and development by a conserved RNA binding protein in C. elegans. Dev Biol, 348(2): 210–221

DOI PMID

106
Bruchova H, Merkerova M, Prchal J T ( 2008). Aberrant expression of microRNA in polycythemia vera. Haematologica. 93(7): 1009–1016

17
Bruchova H, Yoon D, Agarwal A M, Mendell J, Prchal J T (2007). Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol, 35(11): 1657–1667

DOI PMID

3
Bruchova H, Yoon D, Agarwal A M, Swierczek S, Prchal J T (2009). Erythropoiesis in polycythemia vera is hyper-proliferative and has accelerated maturation. Blood Cells Mol Dis, 43(1): 81–87

DOI PMID

66
Bruchova-Votavova H, Yoon D, Prchal J T (2010). miR-451 enhances erythroid differentiation in K562 cells. Leuk Lymphoma, 51(4): 686–693

DOI PMID

78
Buccheri M A, Spina S, Ruberto C, Lombardo T, Labie D, Ragusa A A (2013). Annotated definition of BCL11A and HMIP-2 haplotypes through the analysis of sicilian β-thalassemia patients with high levels of fetal hemoglobin. Hemoglobin, 37(5): 423–434

DOI PMID

39
Byon J C, Papayannopoulou T (2012). MicroRNAs: Allies or foes in erythropoiesis? J Cell Physiol, 227(1): 7–13

DOI PMID

1
Cantor A B, Orkin S H (2002). Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene, 21(21): 3368–3376

DOI PMID

86
Centis F, Tabellini L, Lucarelli G, Buffi O, Tonucci P, Persini B, Annibali M, Emiliani R, Iliescu A, Rapa S, Rossi R, Ma L, Angelucci E, Schrier S L (2000). The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood, 96(10): 3624–3629

PMID

68
Cheloufi S, Dos Santos C O, Chong M M, Hannon G J (2010). A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature, 465(7298): 584–589

DOI PMID

21
Chen S Y, Wang Y, Telen M J, Chi J T (2008). The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS ONE, 3(6): e2360

DOI PMID

16
Choong M L, Yang H H, McNiece I (2007). MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol, 35(4): 551–564

DOI PMID

107
Davis M, Clarke S (2013). Influence of microRNA on the maintenance of human iron metabolism. Nutrients, 5(7): 2611–2628

DOI PMID

63
Dore L C, Amigo J D, Dos Santos C O, Zhang Z, Gai X, Tobias J W, Yu D, Klein A M, Dorman C, Wu W, Hardison R C, Paw B H, Weiss M J (2008). A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA, 105(9): 3333–3338

DOI PMID

11
Fabbri M, Garzon R, Andreeff M, Kantarjian H M, Garcia-Manero G, Calin G A (2008). MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia, 22(6): 1095–1105

DOI PMID

95
Fard A D, Hosseini S A, Shahjahani M, Salari F, Jaseb K (2013). Evaluation of novel fetal hemoglobin inducer drugs in treatment of β-hemoglobinopathy disorders. Int J Hematol Oncol Stem Cell Res, 7(3): 47–54

PMID

20
Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin G A, Liu C G, Sorrentino A, Croce C M, Peschle C (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA, 102(50): 18081–18086

DOI PMID

40
Felli N, Pedini F, Romania P, Biffoni M, Morsilli O, Castelli G, Santoro S, Chicarella S, Sorrentino A, Peschle C, Marziali G (2009). MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. haematologica. Haematologica, 94(4): 479–86

60
Ferreira R, Ohneda K, Yamamoto M, Philipsen S (2005). GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol, 25(4): 1215–1227

DOI PMID

33
Fu Y F, Du T T, Dong M, Zhu K Y, Jing C B, Zhang Y, Wang L, Fan H B, Chen Y, Jin Y, Yue G P, Chen S J, Chen Z, Huang Q H, Jing Q, Deng M, Liu T X (2009). Mir-144 selectively regulates embryonic α-hemoglobin synthesis during primitive erythropoiesis. Blood, 113(6): 1340–1349

DOI PMID

26
García P, Frampton J (2008). Hematopoietic lineage commitment: miRNAs add specificity to a widely expressed transcription factor. Dev Cell, 14(6): 815–816

DOI PMID

73
Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R, Volinia S, Bhatt D, Alder H, Marcucci G, Calin G A, Liu C G, Bloomfield C D, Andreeff M, Croce C M (2006). MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA, 103(13): 5078–5083

DOI PMID

112
Grebien F, Kerenyi M A, Kovacic B, Kolbe T, Becker V, Dolznig H, Pfeffer K, Klingmüller U, Müller M, Beug H, Müllner E W, Moriggl R (2008). Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2. Blood, 111(9): 4511–4522

DOI PMID

14
Guerau-de-Arellano M, Alder H, Ozer H G, Lovett-Racke A, Racke M K (2012). miRNA profiling for biomarker discovery in multiple sclerosis: from microarray to deep sequencing. J Neuroimmunol, 248(1-2): 32–39

DOI PMID

92
Guglielmelli P, Tozzi L, Bogani C, Iacobucci I, Ponziani V, Martinelli G, Bosi A, Vannucchi A M, and the AGIMM (AIRC-Gruppo Italiano Malattie Mieloproliferative) Investigators (2011). Overexpression of microRNA-16-2 contributes to the abnormal erythropoiesis in polycythemia vera. Blood, 117(25): 6923–6927

DOI PMID

58
Hansson A, Zetterblad J, van Duren C, Axelson H, Jönsson J I (2007). The Lim-only protein LMO2 acts as a positive regulator of erythroid differentiation. Biochem Biophys Res Commun, 364(3): 675–681

DOI PMID

18
Hattangadi S M, Wong P, Zhang L, Flygare J, Lodish H F (2011). From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood, 118(24): 6258–6268

DOI PMID

29
Havelange V, Garzon R (2010). MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol, 85(12): 935–942

DOI PMID

79
Higgs D R, Garrick D, Anguita E, De Gobbi M, Hughes J, Muers M, Vernimmen D, Lower K, Law M, Argentaro A, Deville M A, Gibbons R (2005). Understanding α-globin gene regulation: Aiming to improve the management of thalassemia. Ann N Y Acad Sci, 1054(1): 92–102

DOI PMID

81
Hilliard L M, Berkow R L (1996). The thalassemia syndromes. Prim Care Update Ob Gyns, 3(5): 157–162

DOI

31
Huang X, Gschweng E, Van Handel B, Cheng D, Mikkola H K, Witte O N (2011). Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells. Blood, 117(7): 2157–2165

DOI PMID

97
Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem, 275(21): 16023–16029

DOI PMID

104
James C (2008). The JAK2V617F mutation in polycythemia vera and other myeloproliferative disorders: one mutation for three diseases? Hematology (Am Soc Hematol Educ Program), 2008(1): 69–75

DOI PMID

9
Kandhavelu M, Kandhavelu J (2012). pre-piRNA biogenesis mimics the pathway of miRNA. Biochem Syst Ecol, 43: 200–204

DOI

13
Karius T, Schnekenburger M, Dicato M, Diederich M (2012). MicroRNAs in cancer management and their modulation by dietary agents. Biochem Pharmacol, 83(12): 1591–1601

DOI PMID

70
Kim M, Tan Y S, Cheng W C, Kingsbury T J, Heimfeld S, Civin C I (2014). MIR144 and MIR451 regulate human erythropoiesis via RAB14. Br J Haematol, 168(4): 583–597

PMID

2
Kim S I, Bresnick E H (2007). Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene, 26(47): 6777–6794

DOI PMID

38
Kosaka N, Sugiura K, Yamamoto Y, Yoshioka Y, Miyazaki H, Komatsu N, Ochiya T, Kato T (2008). Identification of erythropoietin-induced microRNAs in haematopoietic cells during erythroid differentiation. Br J Haematol, 142(2): 293–300

DOI PMID

41
Lawrie C H (2010). microRNA expression in erythropoiesis and erythroid disorders. Br J Haematol, 150(2): 144–151

PMID

99
Lee J M, Johnson J A (2004). An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol, 37(2): 139–143

DOI PMID

5
Leonard M, Brice M, Engel J D, Papayannopoulou T (1993). Dynamics of GATA transcription factor expression during erythroid differentiation. Blood, 82(4): 1071–1079

PMID

105
Levine R L, Gilliland D G (2008). Myeloproliferative disorders. Blood, 112(6): 2190–2198

DOI PMID

44
Listowski M A, Heger E, Bogusławska D M, Machnicka B, Kuliczkowski K, Leluk J, Sikorski A F (2013). microRNAs: fine tuning of erythropoiesis. Cell Mol Biol Lett, 18(1): 34–46

DOI PMID

87
Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U, Giuliani A, Marziali G (2013). MicroRNA-486-3p regulates g-globin expression in human erythroid cells by directly modulating BCL11A. PLoS ONE, 8(4): e60436

DOI PMID

80
Maniatis T, Fritsch E F, Lauer J, Lawn R M (1980). The molecular genetics of human hemoglobins. Annu Rev Genet, 14(1): 145–178

DOI PMID

34
Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T (2007). Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun, 364(3): 509–514

DOI PMID

85
Mathias L A, Fisher T C, Zeng L, Meiselman H J, Weinberg K I, Hiti A L, Malik P (2000). Ineffective erythropoiesis in β-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp Hematol, 28(12): 1343–1353

DOI PMID

109
Melotti P, Calabretta B (1996). Induction of hematopoietic commitment and erythromyeloid differentiation in embryonal stem cells constitutively expressing c-myb. Blood, 87(6): 2221–2234

PMID

65
Merkerova M, Belickova M, Bruchova H (2008). Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol, 81(4): 304–310

DOI PMID

22
Moritz K M, Lim G B, Wintour E M (1997). Developmental regulation of erythropoietin and erythropoiesis. Am J Physiol, 273(6 Pt 2): R1829–R1844

PMID

98
Motohashi H, Yamamoto M (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med, 10(11): 549–557

DOI PMID

52
Munugalavadla V, Kapur R (2005). Role of c-Kit and erythropoietin receptor in erythropoiesis. Crit Rev Oncol Hematol, 54(1): 63–75

DOI PMID

91
Noh S J, Miller S H, Lee Y T, Goh S H, Marincola F M, Stroncek D F, Reed C, Wang E, Miller J L (2009). Let-7 microRNAs are developmentally regulated in circulating human erythroid cells. J Transl Med, 7(1): 98

DOI PMID

67
O’Carroll D, Mecklenbrauker I, Das P P, Santana A, Koenig U, Enright A J, Miska E A, Tarakhovsky A (2007). A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev, 21(16): 1999–2004

DOI PMID

35
O’Connell R M, Rao D S, Chaudhuri A A, Boldin M P, Taganov K D, Nicoll J, Paquette R L, Baltimore D (2008). Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med, 205(3): 585–594

DOI PMID

23
Palis J (2008). Ontogeny of erythropoiesis. Curr Opin Hematol, 15(3): 155–161

DOI PMID

108
Palis J (2014). Primitive and definitive erythropoiesis in mammals. Front Physiol, 5: 3

DOI PMID

82
Papayannopoulou T, Kalmantis T, Stamatoyannopoulos G (1979). Cellular regulation of hemoglobin switching: evidence for inverse relationship between fetal hemoglobin synthesis and degree of maturity of human erythroid cells. Proc Natl Acad Sci USA, 76(12): 6420–6424

DOI PMID

32
Pase L, Layton J E, Kloosterman W P, Carradice D, Waterhouse P M, Lieschke G J (2009). miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood, 113(8): 1794–1804

DOI PMID

101
Patrick D M, Zhang C C, Tao Y, Yao H, Qi X, Schwartz R J, Jun-Shen Huang L, Olson E N (2010). Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3z. Genes Dev, 24(15): 1614–1619

DOI PMID

83
Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu C G, Rassenti L, Calin G A, Hagan J P, Kipps T, Croce C M (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res, 66(24): 11590–11593

DOI PMID

62
Rasmussen K D, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, Horos R, Von Lindern M, Enright A J, O’Carroll D (2010). The miR-144/451 locus is required for erythroid homeostasis. J Exp Med, 207(7): 1351–1358

DOI PMID

15
Saki N, Abroun S, Soleimani M, Hajizamani S, Shahjahani M, Kast R E, Mortazavi Y (2015). Involvement of microRNA in t-cell differentiation and malignancy. Int J Hematol Oncol Stem Cell Res, 9(1): 33–49

PMID

96
Sangokoya C, Telen M J, Chi J T (2010). microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood, 116(20): 4338–4348

DOI PMID

94
Sankaran V G (2011). Targeted therapeutic strategies for fetal hemoglobin induction. Hematology (Am Soc Hematol Educ Program), 2011(1): 459–465

DOI PMID

49
Sarakul O, Vattanaviboon P, Tanaka Y, Fucharoen S, Abe Y, Svasti S, Umemura T (2013). Enhanced erythroid cell differentiation in hypoxic condition is in part contributed by miR-210. Blood Cells Mol Dis, 51(2): 98–103

DOI PMID

24
Shiozaki M, Sakai R, Tabuchi M, Nakamura T, Sugino K, Sugino H, Eto Y (1992). Evidence for the participation of endogenous activin A/erythroid differentiation factor in the regulation of erythropoiesis. Proc Natl Acad Sci USA, 89(5): 1553–1556

DOI PMID

93
Shivdasani R A (2006). MicroRNAs: regulators of gene expression and cell differentiation. Blood, 108(12): 3646–3653

DOI PMID

4
Silva M, Benito A, Sanz C, Prosper F, Ekhterae D, Nuñez G, Fernandez-Luna J L (1999). Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem, 274(32): 22165–22169

DOI PMID

89
Stamatoyannopoulos G (2005). Control of globin gene expression during development and erythroid differentiation. Exp Hematol, 33(3): 259–271

DOI PMID

69
Stenmark H (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol, 10(8): 513–525

DOI PMID

46
Sturgeon C M, Chicha L, Ditadi A, Zhou Q, McGrath K E, Palis J, Hammond S M, Wang S, Olson E N, Keller G (2012). Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells. Dev Cell, 23(1): 45–57

DOI PMID

64
Svasti S, Masaki S, Penglong T, Abe Y, Winichagoon P, Fucharoen S, Umemura T (2010). Expression of microRNA-451 in normal and thalassemic erythropoiesis. Ann Hematol, 89(10): 953–958

DOI PMID

77
Tsiftsoglou A S, Vizirianakis I S, Strouboulis J (2009). Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life, 61(8): 800–830

DOI PMID

8
Valencia-Sanchez M A, Liu J, Hannon G J, Parker R (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 20(5): 515–524

DOI PMID

53
van de Loosdrecht A A, Vellenga E (2000). Myelodysplasia and apoptosis: new insights into ineffective erythropoiesis. Med Oncol, 17(1): 16–21

DOI PMID

19
Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J (2010). The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol, 84(1): 1–16

DOI PMID

57
Wadman I A, Osada H, Grütz G G, Agulnick A D, Westphal H, Forster A, Rabbitts T H (1997). The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J, 16(11): 3145–3157

DOI PMID

100
Walker A L, Steward S, Howard T A, Mortier N, Smeltzer M, Wang Y D, Ware R E (2011). Epigenetic and molecular profiles of erythroid cells after hydroxyurea treatment in sickle cell anemia. Blood, 118(20): 5664–5670

DOI PMID

59
Wall L, deBoer E, Grosveld F (1988). The human beta-globin gene 3′ enhancer contains multiple binding sites for an erythroid-specific protein. Genes Dev, 2(9): 1089–1100

DOI PMID

42
Wang F, Yu J, Yang G H, Wang X S, Zhang J W (2011). Regulation of erythroid differentiation by miR-376a and its targets. Cell Res, 21(8): 1196–1209

DOI PMID

71
Wang F, Zhu Y, Guo L, Dong L, Liu H, Yin H, Zhang Z, Li Y, Liu C, Ma Y, Song W, He A, Wang Q, Wang L, Zhang J, Li J, Yu J (2013). A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis. Nucleic Acids Res, 42(1): 442–457

PMID

75
Wang L, Li L, Chu S, Shiang K, Li M, Sun H, Xu J, Xiao F J, Sun G, Rossi J J, Ho Y, Bhatia R (2014). MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood, 125(8):1302–1303

PMID

30
Wang Q, Huang Z, Xue H, Jin C, Ju X L, Han J D J, Chen Y G (2008). MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood, 111(2): 588–595

DOI PMID

56
Warren A J, Colledge W H, Carlton M B, Evans M J, Smith A J, Rabbitts T H (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell, 78(1): 45–57

DOI PMID

61
Welch J J, Watts J A, Vakoc C R, Yao Y, Wang H, Hardison R C, Blobel G A, Chodosh L A, Weiss M J (2004). Global regulation of erythroid gene expression by transcription factor GATA-1. Blood, 104(10): 3136–3147

DOI PMID

51
Williams D E, Eisenman J, Baird A, Rauch C, Van Ness K, March C J, Park L S, Martin U, Mochizuki D Y, Boswell H S, Burgess G S, Cosman D, Lyman S D (1990). Identification of a ligand for the c-kit proto-oncogene. Cell, 63(1): 167–174

DOI PMID

25
Wu H, Liu X, Jaenisch R, Lodish H F (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 83(1): 59–67

DOI PMID

47
Xu M J, Sui X, Zhao R, Dai C, Krantz S B, Zhao Z J (2003). PTP-MEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. Blood, 102(13): 4354–4360

DOI PMID

45
Xu R H, Sampsell-Barron T L, Gu F, Root S, Peck R M, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson J A (2008). NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 3(2): 196–206

DOI PMID

10
Yang J S, Lai E C (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell, 43(6): 892–903

DOI PMID

102
Yu D, dos Santos C O, Zhao G, Jiang J, Amigo J D, Khandros E, Dore L C, Yao Y, D’Souza J, Zhang Z, Ghaffari S, Choi J, Friend S, Tong W, Orange J S, Paw B H, Weiss M J (2010). miR-451 protects against erythroid oxidant stress by repressing 14-3-3z. Genes Dev, 24(15): 1620–1633

DOI PMID

84
Yuan J, Angelucci E, Lucarelli G, Aljurf M, Snyder L M, Kiefer C R, Ma L, Schrier S L (1993). Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta-thalassemia (Cooley’s anemia). Blood, 82(2): 374–377

PMID

76
Zhai P F, Wang F, Su R, Lin H S, Jiang C L, Yang G H, Yu J, Zhang J W (2014). The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Biol Chem, 289(33): 22600–22613

DOI PMID

50
Zhan M, Miller C P, Papayannopoulou T, Stamatoyannopoulos G, Song C Z (2007). MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol, 35(7): 1015–1025

DOI PMID

36
Zhang L, Flygare J, Wong P, Lim B, Lodish H F (2011). miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev, 25(2): 119–124

DOI PMID

27
Zhang L, Sankaran V G, Lodish H F (2012). MicroRNAs in erythroid and megakaryocytic differentiation and megakaryocyte-erythroid progenitor lineage commitment. Leukemia, 26(11): 2310–2316

DOI PMID

74
Zhao H, Kalota A, Jin S, Gewirtz A M (2009). The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood, 113(3): 505–516

DOI PMID

111
Zhou D, Liu K, Sun C W, Pawlik K M, Townes T M (2010). KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet, 42(9): 742–744

DOI PMID

72
Zhu Y, Wang D, Wang F, Li T, Dong L, Liu H, Ma Y, Jiang F, Yin H, Yan W, Luo M, Tang Z, Zhang G, Wang Q, Zhang J, Zhou J, Yu J (2013). A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis. Nucleic Acids Res, 41(7): 4129–4143

DOI PMID

Outlines

/