![](/develop/static/imgs/pdf.png)
MicroRNAs in erythropoiesis and red blood cell disorders
Javad Mohammdai-asl, Abolfazl Ramezani, Fatemeh Norozi, Amal Saki Malehi, Ali Amin Asnafi, Mohammad Ali Jalali Far, Seyed Hadi Mousavi, Najmaldin Saki
MicroRNAs in erythropoiesis and red blood cell disorders
MicroRNAs (miRNAs) are 19-24 nucleotide non-coding ribonucleic acids binding DNA or RNA and controlling gene expression via mRNA degradation or its transcription inhibition. Erythropoies is a multi step differentiation process of erythroid progenitors to nucleate red blood cells. Maturation, proliferation and differentiation of red blood cells is affected by erythroid factors, signaling pathways in niche of hematopoietic cells, transcription factors as well as miRNAs. Expression of different types of miRNAs during erythroid development provides a background for the study of these molecules to control erythroid differentiation and maturation as well as their use as diagnostic and prognostic markers to treat erythroid disorders like thalassemia, sickle cell disease and erythrocyte enzyme deficiencies. In this paper, with reference to biosynthesis of miRNAs, their function in normal and anemic erythropoiesis has been investigated. The target molecule of each of these miRNAs has been cited in an attempt to elucidate their role in erythropoiesis.
miRNA / erythropoiesis / red blood cell
[12] |
Aalto A P, Pasquinelli A E (2012). Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol, 24(3): 333–340
CrossRef
Pubmed
Google scholar
|
[6] |
Aerbajinai W, Giattina M, Lee Y T, Raffeld M, Miller J L (2003). The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood, 102(2): 712–717
CrossRef
Pubmed
Google scholar
|
[43] |
Andolfo I, De Falco L, Asci R, Russo R, Colucci S, Gorrese M, Zollo M, Iolascon A(2010). Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica, 95(8): 1244–1252
|
[28] |
Azzouzi I, Schmugge M, Speer O (2012). MicroRNAs as components of regulatory networks controlling erythropoiesis. Eur J Haematol, 89(1): 1–9
CrossRef
Pubmed
Google scholar
|
[54] |
Bakker W J, Blázquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H, Coffer P J, Löwenberg B, von Lindern M, van Dijk T B (2004). FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol, 164(2): 175–184
CrossRef
Pubmed
Google scholar
|
[103] |
Bakker W J, van Dijk T B, Parren-van Amelsvoort M, Kolbus A, Yamamoto K, Steinlein P, Verhaak R G, Mak T W, Beug H, Löwenberg B, von Lindern M (2007). Differential regulation of Foxo3a target genes in erythropoiesis. Mol Cell Biol, 27(10): 3839–3854
CrossRef
Pubmed
Google scholar
|
[55] |
Baltimore D, Boldin M P, O’Connell R M, Rao D S, Taganov K D (2008). MicroRNAs: new regulators of immune cell development and function. Nat Immunol, 9(8): 839–845
CrossRef
Pubmed
Google scholar
|
[90] |
Bank A (2006). Regulation of human fetal hemoglobin: new players, new complexities. Blood, 107(2): 435–443
CrossRef
Pubmed
Google scholar
|
[88] |
Basu P, Lung T K, Lemsaddek W, Sargent T G, Williams D C Jr, Basu M, Redmond L C, Lingrel J B, Haar J L, Lloyd J A (2007). EKLF and KLF2 have compensatory roles in embryonic β-globin gene expression and primitive erythropoiesis. Blood, 110(9): 3417–3425
CrossRef
Pubmed
Google scholar
|
[110] |
Bianchi E, Zini R, Salati S, Tenedini E, Norfo R, Tagliafico E, Manfredini R, Ferrari S (2010). c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression. Blood, 116(22): e99–e110
CrossRef
Pubmed
Google scholar
|
[37] |
Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R (2012). Involvement of miRNA in erythroid differentiation. Epigenomics, 4(1): 51–65
CrossRef
Pubmed
Google scholar
|
[48] |
Bianchi N, Zuccato C, Lampronti I, Borgatti M, Gambari R (2009). Expression of miR-210 during erythroid differentiation and induction of gamma-globin gene expression. BMB Rep, 42(8): 493–499
CrossRef
Pubmed
Google scholar
|
[7] |
Bracht J R, Van Wynsberghe P M, Mondol V, Pasquinelli A E (2010). Regulation of lin-4 miRNA expression, organismal growth and development by a conserved RNA binding protein in C. elegans. Dev Biol, 348(2): 210–221
CrossRef
Pubmed
Google scholar
|
[106] |
Bruchova H, Merkerova M, Prchal J T ( 2008). Aberrant expression of microRNA in polycythemia vera. Haematologica. 93(7): 1009–1016
|
[17] |
Bruchova H, Yoon D, Agarwal A M, Mendell J, Prchal J T (2007). Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol, 35(11): 1657–1667
CrossRef
Pubmed
Google scholar
|
[3] |
Bruchova H, Yoon D, Agarwal A M, Swierczek S, Prchal J T (2009). Erythropoiesis in polycythemia vera is hyper-proliferative and has accelerated maturation. Blood Cells Mol Dis, 43(1): 81–87
CrossRef
Pubmed
Google scholar
|
[66] |
Bruchova-Votavova H, Yoon D, Prchal J T (2010). miR-451 enhances erythroid differentiation in K562 cells. Leuk Lymphoma, 51(4): 686–693
CrossRef
Pubmed
Google scholar
|
[78] |
Buccheri M A, Spina S, Ruberto C, Lombardo T, Labie D, Ragusa A A (2013). Annotated definition of BCL11A and HMIP-2 haplotypes through the analysis of sicilian β-thalassemia patients with high levels of fetal hemoglobin. Hemoglobin, 37(5): 423–434
CrossRef
Pubmed
Google scholar
|
[39] |
Byon J C, Papayannopoulou T (2012). MicroRNAs: Allies or foes in erythropoiesis? J Cell Physiol, 227(1): 7–13
CrossRef
Pubmed
Google scholar
|
[1] |
Cantor A B, Orkin S H (2002). Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene, 21(21): 3368–3376
CrossRef
Pubmed
Google scholar
|
[86] |
Centis F, Tabellini L, Lucarelli G, Buffi O, Tonucci P, Persini B, Annibali M, Emiliani R, Iliescu A, Rapa S, Rossi R, Ma L, Angelucci E, Schrier S L (2000). The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood, 96(10): 3624–3629
Pubmed
|
[68] |
Cheloufi S, Dos Santos C O, Chong M M, Hannon G J (2010). A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature, 465(7298): 584–589
CrossRef
Pubmed
Google scholar
|
[21] |
Chen S Y, Wang Y, Telen M J, Chi J T (2008). The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS ONE, 3(6): e2360
CrossRef
Pubmed
Google scholar
|
[16] |
Choong M L, Yang H H, McNiece I (2007). MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol, 35(4): 551–564
CrossRef
Pubmed
Google scholar
|
[107] |
Davis M, Clarke S (2013). Influence of microRNA on the maintenance of human iron metabolism. Nutrients, 5(7): 2611–2628
CrossRef
Pubmed
Google scholar
|
[63] |
Dore L C, Amigo J D, Dos Santos C O, Zhang Z, Gai X, Tobias J W, Yu D, Klein A M, Dorman C, Wu W, Hardison R C, Paw B H, Weiss M J (2008). A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA, 105(9): 3333–3338
CrossRef
Pubmed
Google scholar
|
[11] |
Fabbri M, Garzon R, Andreeff M, Kantarjian H M, Garcia-Manero G, Calin G A (2008). MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia, 22(6): 1095–1105
CrossRef
Pubmed
Google scholar
|
[95] |
Fard A D, Hosseini S A, Shahjahani M, Salari F, Jaseb K (2013). Evaluation of novel fetal hemoglobin inducer drugs in treatment of β-hemoglobinopathy disorders. Int J Hematol Oncol Stem Cell Res, 7(3): 47–54
Pubmed
|
[20] |
Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin G A, Liu C G, Sorrentino A, Croce C M, Peschle C (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA, 102(50): 18081–18086
CrossRef
Pubmed
Google scholar
|
[40] |
Felli N, Pedini F, Romania P, Biffoni M, Morsilli O, Castelli G, Santoro S, Chicarella S, Sorrentino A, Peschle C, Marziali G (2009). MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. haematologica. Haematologica, 94(4): 479–86
|
[60] |
Ferreira R, Ohneda K, Yamamoto M, Philipsen S (2005). GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol, 25(4): 1215–1227
CrossRef
Pubmed
Google scholar
|
[33] |
Fu Y F, Du T T, Dong M, Zhu K Y, Jing C B, Zhang Y, Wang L, Fan H B, Chen Y, Jin Y, Yue G P, Chen S J, Chen Z, Huang Q H, Jing Q, Deng M, Liu T X (2009). Mir-144 selectively regulates embryonic α-hemoglobin synthesis during primitive erythropoiesis. Blood, 113(6): 1340–1349
CrossRef
Pubmed
Google scholar
|
[26] |
García P, Frampton J (2008). Hematopoietic lineage commitment: miRNAs add specificity to a widely expressed transcription factor. Dev Cell, 14(6): 815–816
CrossRef
Pubmed
Google scholar
|
[73] |
Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R, Volinia S, Bhatt D, Alder H, Marcucci G, Calin G A, Liu C G, Bloomfield C D, Andreeff M, Croce C M (2006). MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA, 103(13): 5078–5083
CrossRef
Pubmed
Google scholar
|
[112] |
Grebien F, Kerenyi M A, Kovacic B, Kolbe T, Becker V, Dolznig H, Pfeffer K, Klingmüller U, Müller M, Beug H, Müllner E W, Moriggl R (2008). Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2. Blood, 111(9): 4511–4522
CrossRef
Pubmed
Google scholar
|
[14] |
Guerau-de-Arellano M, Alder H, Ozer H G, Lovett-Racke A, Racke M K (2012). miRNA profiling for biomarker discovery in multiple sclerosis: from microarray to deep sequencing. J Neuroimmunol, 248(1-2): 32–39
CrossRef
Pubmed
Google scholar
|
[92] |
Guglielmelli P, Tozzi L, Bogani C, Iacobucci I, Ponziani V, Martinelli G, Bosi A, Vannucchi A M, and the AGIMM (AIRC-Gruppo Italiano Malattie Mieloproliferative) Investigators (2011). Overexpression of microRNA-16-2 contributes to the abnormal erythropoiesis in polycythemia vera. Blood, 117(25): 6923–6927
CrossRef
Pubmed
Google scholar
|
[58] |
Hansson A, Zetterblad J, van Duren C, Axelson H, Jönsson J I (2007). The Lim-only protein LMO2 acts as a positive regulator of erythroid differentiation. Biochem Biophys Res Commun, 364(3): 675–681
CrossRef
Pubmed
Google scholar
|
[18] |
Hattangadi S M, Wong P, Zhang L, Flygare J, Lodish H F (2011). From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood, 118(24): 6258–6268
CrossRef
Pubmed
Google scholar
|
[29] |
Havelange V, Garzon R (2010). MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol, 85(12): 935–942
CrossRef
Pubmed
Google scholar
|
[79] |
Higgs D R, Garrick D, Anguita E, De Gobbi M, Hughes J, Muers M, Vernimmen D, Lower K, Law M, Argentaro A, Deville M A, Gibbons R (2005). Understanding α-globin gene regulation: Aiming to improve the management of thalassemia. Ann N Y Acad Sci, 1054(1): 92–102
CrossRef
Pubmed
Google scholar
|
[81] |
Hilliard L M, Berkow R L (1996). The thalassemia syndromes. Prim Care Update Ob Gyns, 3(5): 157–162
CrossRef
Google scholar
|
[31] |
Huang X, Gschweng E, Van Handel B, Cheng D, Mikkola H K, Witte O N (2011). Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells. Blood, 117(7): 2157–2165
CrossRef
Pubmed
Google scholar
|
[97] |
Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem, 275(21): 16023–16029
CrossRef
Pubmed
Google scholar
|
[104] |
James C (2008). The JAK2V617F mutation in polycythemia vera and other myeloproliferative disorders: one mutation for three diseases? Hematology (Am Soc Hematol Educ Program), 2008(1): 69–75
CrossRef
Pubmed
Google scholar
|
[9] |
Kandhavelu M, Kandhavelu J (2012). pre-piRNA biogenesis mimics the pathway of miRNA. Biochem Syst Ecol, 43: 200–204
CrossRef
Google scholar
|
[13] |
Karius T, Schnekenburger M, Dicato M, Diederich M (2012). MicroRNAs in cancer management and their modulation by dietary agents. Biochem Pharmacol, 83(12): 1591–1601
CrossRef
Pubmed
Google scholar
|
[70] |
Kim M, Tan Y S, Cheng W C, Kingsbury T J, Heimfeld S, Civin C I (2014). MIR144 and MIR451 regulate human erythropoiesis via RAB14. Br J Haematol, 168(4): 583–597
Pubmed
|
[2] |
Kim S I, Bresnick E H (2007). Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene, 26(47): 6777–6794
CrossRef
Pubmed
Google scholar
|
[38] |
Kosaka N, Sugiura K, Yamamoto Y, Yoshioka Y, Miyazaki H, Komatsu N, Ochiya T, Kato T (2008). Identification of erythropoietin-induced microRNAs in haematopoietic cells during erythroid differentiation. Br J Haematol, 142(2): 293–300
CrossRef
Pubmed
Google scholar
|
[41] |
Lawrie C H (2010). microRNA expression in erythropoiesis and erythroid disorders. Br J Haematol, 150(2): 144–151
Pubmed
|
[99] |
Lee J M, Johnson J A (2004). An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol, 37(2): 139–143
CrossRef
Pubmed
Google scholar
|
[5] |
Leonard M, Brice M, Engel J D, Papayannopoulou T (1993). Dynamics of GATA transcription factor expression during erythroid differentiation. Blood, 82(4): 1071–1079
Pubmed
|
[105] |
Levine R L, Gilliland D G (2008). Myeloproliferative disorders. Blood, 112(6): 2190–2198
CrossRef
Pubmed
Google scholar
|
[44] |
Listowski M A, Heger E, Bogusławska D M, Machnicka B, Kuliczkowski K, Leluk J, Sikorski A F (2013). microRNAs: fine tuning of erythropoiesis. Cell Mol Biol Lett, 18(1): 34–46
CrossRef
Pubmed
Google scholar
|
[87] |
Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U, Giuliani A, Marziali G (2013). MicroRNA-486-3p regulates g-globin expression in human erythroid cells by directly modulating BCL11A. PLoS ONE, 8(4): e60436
CrossRef
Pubmed
Google scholar
|
[80] |
Maniatis T, Fritsch E F, Lauer J, Lawn R M (1980). The molecular genetics of human hemoglobins. Annu Rev Genet, 14(1): 145–178
CrossRef
Pubmed
Google scholar
|
[34] |
Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T (2007). Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun, 364(3): 509–514
CrossRef
Pubmed
Google scholar
|
[85] |
Mathias L A, Fisher T C, Zeng L, Meiselman H J, Weinberg K I, Hiti A L, Malik P (2000). Ineffective erythropoiesis in β-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp Hematol, 28(12): 1343–1353
CrossRef
Pubmed
Google scholar
|
[109] |
Melotti P, Calabretta B (1996). Induction of hematopoietic commitment and erythromyeloid differentiation in embryonal stem cells constitutively expressing c-myb. Blood, 87(6): 2221–2234
Pubmed
|
[65] |
Merkerova M, Belickova M, Bruchova H (2008). Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol, 81(4): 304–310
CrossRef
Pubmed
Google scholar
|
[22] |
Moritz K M, Lim G B, Wintour E M (1997). Developmental regulation of erythropoietin and erythropoiesis. Am J Physiol, 273(6 Pt 2): R1829–R1844
Pubmed
|
[98] |
Motohashi H, Yamamoto M (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med, 10(11): 549–557
CrossRef
Pubmed
Google scholar
|
[52] |
Munugalavadla V, Kapur R (2005). Role of c-Kit and erythropoietin receptor in erythropoiesis. Crit Rev Oncol Hematol, 54(1): 63–75
CrossRef
Pubmed
Google scholar
|
[91] |
Noh S J, Miller S H, Lee Y T, Goh S H, Marincola F M, Stroncek D F, Reed C, Wang E, Miller J L (2009). Let-7 microRNAs are developmentally regulated in circulating human erythroid cells. J Transl Med, 7(1): 98
CrossRef
Pubmed
Google scholar
|
[67] |
O’Carroll D, Mecklenbrauker I, Das P P, Santana A, Koenig U, Enright A J, Miska E A, Tarakhovsky A (2007). A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev, 21(16): 1999–2004
CrossRef
Pubmed
Google scholar
|
[35] |
O’Connell R M, Rao D S, Chaudhuri A A, Boldin M P, Taganov K D, Nicoll J, Paquette R L, Baltimore D (2008). Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med, 205(3): 585–594
CrossRef
Pubmed
Google scholar
|
[23] |
Palis J (2008). Ontogeny of erythropoiesis. Curr Opin Hematol, 15(3): 155–161
CrossRef
Pubmed
Google scholar
|
[108] |
Palis J (2014). Primitive and definitive erythropoiesis in mammals. Front Physiol, 5: 3
CrossRef
Pubmed
Google scholar
|
[82] |
Papayannopoulou T, Kalmantis T, Stamatoyannopoulos G (1979). Cellular regulation of hemoglobin switching: evidence for inverse relationship between fetal hemoglobin synthesis and degree of maturity of human erythroid cells. Proc Natl Acad Sci USA, 76(12): 6420–6424
CrossRef
Pubmed
Google scholar
|
[32] |
Pase L, Layton J E, Kloosterman W P, Carradice D, Waterhouse P M, Lieschke G J (2009). miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood, 113(8): 1794–1804
CrossRef
Pubmed
Google scholar
|
[101] |
Patrick D M, Zhang C C, Tao Y, Yao H, Qi X, Schwartz R J, Jun-Shen Huang L, Olson E N (2010). Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3z. Genes Dev, 24(15): 1614–1619
CrossRef
Pubmed
Google scholar
|
[83] |
Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu C G, Rassenti L, Calin G A, Hagan J P, Kipps T, Croce C M (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res, 66(24): 11590–11593
CrossRef
Pubmed
Google scholar
|
[62] |
Rasmussen K D, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, Horos R, Von Lindern M, Enright A J, O’Carroll D (2010). The miR-144/451 locus is required for erythroid homeostasis. J Exp Med, 207(7): 1351–1358
CrossRef
Pubmed
Google scholar
|
[15] |
Saki N, Abroun S, Soleimani M, Hajizamani S, Shahjahani M, Kast R E, Mortazavi Y (2015). Involvement of microRNA in t-cell differentiation and malignancy. Int J Hematol Oncol Stem Cell Res, 9(1): 33–49
Pubmed
|
[96] |
Sangokoya C, Telen M J, Chi J T (2010). microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood, 116(20): 4338–4348
CrossRef
Pubmed
Google scholar
|
[94] |
Sankaran V G (2011). Targeted therapeutic strategies for fetal hemoglobin induction. Hematology (Am Soc Hematol Educ Program), 2011(1): 459–465
CrossRef
Pubmed
Google scholar
|
[49] |
Sarakul O, Vattanaviboon P, Tanaka Y, Fucharoen S, Abe Y, Svasti S, Umemura T (2013). Enhanced erythroid cell differentiation in hypoxic condition is in part contributed by miR-210. Blood Cells Mol Dis, 51(2): 98–103
CrossRef
Pubmed
Google scholar
|
[24] |
Shiozaki M, Sakai R, Tabuchi M, Nakamura T, Sugino K, Sugino H, Eto Y (1992). Evidence for the participation of endogenous activin A/erythroid differentiation factor in the regulation of erythropoiesis. Proc Natl Acad Sci USA, 89(5): 1553–1556
CrossRef
Pubmed
Google scholar
|
[93] |
Shivdasani R A (2006). MicroRNAs: regulators of gene expression and cell differentiation. Blood, 108(12): 3646–3653
CrossRef
Pubmed
Google scholar
|
[4] |
Silva M, Benito A, Sanz C, Prosper F, Ekhterae D, Nuñez G, Fernandez-Luna J L (1999). Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem, 274(32): 22165–22169
CrossRef
Pubmed
Google scholar
|
[89] |
Stamatoyannopoulos G (2005). Control of globin gene expression during development and erythroid differentiation. Exp Hematol, 33(3): 259–271
CrossRef
Pubmed
Google scholar
|
[69] |
Stenmark H (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol, 10(8): 513–525
CrossRef
Pubmed
Google scholar
|
[46] |
Sturgeon C M, Chicha L, Ditadi A, Zhou Q, McGrath K E, Palis J, Hammond S M, Wang S, Olson E N, Keller G (2012). Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells. Dev Cell, 23(1): 45–57
CrossRef
Pubmed
Google scholar
|
[64] |
Svasti S, Masaki S, Penglong T, Abe Y, Winichagoon P, Fucharoen S, Umemura T (2010). Expression of microRNA-451 in normal and thalassemic erythropoiesis. Ann Hematol, 89(10): 953–958
CrossRef
Pubmed
Google scholar
|
[77] |
Tsiftsoglou A S, Vizirianakis I S, Strouboulis J (2009). Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life, 61(8): 800–830
CrossRef
Pubmed
Google scholar
|
[8] |
Valencia-Sanchez M A, Liu J, Hannon G J, Parker R (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 20(5): 515–524
CrossRef
Pubmed
Google scholar
|
[53] |
van de Loosdrecht A A, Vellenga E (2000). Myelodysplasia and apoptosis: new insights into ineffective erythropoiesis. Med Oncol, 17(1): 16–21
CrossRef
Pubmed
Google scholar
|
[19] |
Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J (2010). The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol, 84(1): 1–16
CrossRef
Pubmed
Google scholar
|
[57] |
Wadman I A, Osada H, Grütz G G, Agulnick A D, Westphal H, Forster A, Rabbitts T H (1997). The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J, 16(11): 3145–3157
CrossRef
Pubmed
Google scholar
|
[100] |
Walker A L, Steward S, Howard T A, Mortier N, Smeltzer M, Wang Y D, Ware R E (2011). Epigenetic and molecular profiles of erythroid cells after hydroxyurea treatment in sickle cell anemia. Blood, 118(20): 5664–5670
CrossRef
Pubmed
Google scholar
|
[59] |
Wall L, deBoer E, Grosveld F (1988). The human beta-globin gene 3′ enhancer contains multiple binding sites for an erythroid-specific protein. Genes Dev, 2(9): 1089–1100
CrossRef
Pubmed
Google scholar
|
[42] |
Wang F, Yu J, Yang G H, Wang X S, Zhang J W (2011). Regulation of erythroid differentiation by miR-376a and its targets. Cell Res, 21(8): 1196–1209
CrossRef
Pubmed
Google scholar
|
[71] |
Wang F, Zhu Y, Guo L, Dong L, Liu H, Yin H, Zhang Z, Li Y, Liu C, Ma Y, Song W, He A, Wang Q, Wang L, Zhang J, Li J, Yu J (2013). A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis. Nucleic Acids Res, 42(1): 442–457
Pubmed
|
[75] |
Wang L, Li L, Chu S, Shiang K, Li M, Sun H, Xu J, Xiao F J, Sun G, Rossi J J, Ho Y, Bhatia R (2014). MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood, 125(8):1302–1303
Pubmed
|
[30] |
Wang Q, Huang Z, Xue H, Jin C, Ju X L, Han J D J, Chen Y G (2008). MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood, 111(2): 588–595
CrossRef
Pubmed
Google scholar
|
[56] |
Warren A J, Colledge W H, Carlton M B, Evans M J, Smith A J, Rabbitts T H (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell, 78(1): 45–57
CrossRef
Pubmed
Google scholar
|
[61] |
Welch J J, Watts J A, Vakoc C R, Yao Y, Wang H, Hardison R C, Blobel G A, Chodosh L A, Weiss M J (2004). Global regulation of erythroid gene expression by transcription factor GATA-1. Blood, 104(10): 3136–3147
CrossRef
Pubmed
Google scholar
|
[51] |
Williams D E, Eisenman J, Baird A, Rauch C, Van Ness K, March C J, Park L S, Martin U, Mochizuki D Y, Boswell H S, Burgess G S, Cosman D, Lyman S D (1990). Identification of a ligand for the c-kit proto-oncogene. Cell, 63(1): 167–174
CrossRef
Pubmed
Google scholar
|
[25] |
Wu H, Liu X, Jaenisch R, Lodish H F (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 83(1): 59–67
CrossRef
Pubmed
Google scholar
|
[47] |
Xu M J, Sui X, Zhao R, Dai C, Krantz S B, Zhao Z J (2003). PTP-MEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. Blood, 102(13): 4354–4360
CrossRef
Pubmed
Google scholar
|
[45] |
Xu R H, Sampsell-Barron T L, Gu F, Root S, Peck R M, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson J A (2008). NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 3(2): 196–206
CrossRef
Pubmed
Google scholar
|
[10] |
Yang J S, Lai E C (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell, 43(6): 892–903
CrossRef
Pubmed
Google scholar
|
[102] |
Yu D, dos Santos C O, Zhao G, Jiang J, Amigo J D, Khandros E, Dore L C, Yao Y, D’Souza J, Zhang Z, Ghaffari S, Choi J, Friend S, Tong W, Orange J S, Paw B H, Weiss M J (2010). miR-451 protects against erythroid oxidant stress by repressing 14-3-3z. Genes Dev, 24(15): 1620–1633
CrossRef
Pubmed
Google scholar
|
[84] |
Yuan J, Angelucci E, Lucarelli G, Aljurf M, Snyder L M, Kiefer C R, Ma L, Schrier S L (1993). Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta-thalassemia (Cooley’s anemia). Blood, 82(2): 374–377
Pubmed
|
[76] |
Zhai P F, Wang F, Su R, Lin H S, Jiang C L, Yang G H, Yu J, Zhang J W (2014). The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Biol Chem, 289(33): 22600–22613
CrossRef
Pubmed
Google scholar
|
[50] |
Zhan M, Miller C P, Papayannopoulou T, Stamatoyannopoulos G, Song C Z (2007). MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol, 35(7): 1015–1025
CrossRef
Pubmed
Google scholar
|
[36] |
Zhang L, Flygare J, Wong P, Lim B, Lodish H F (2011). miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev, 25(2): 119–124
CrossRef
Pubmed
Google scholar
|
[27] |
Zhang L, Sankaran V G, Lodish H F (2012). MicroRNAs in erythroid and megakaryocytic differentiation and megakaryocyte-erythroid progenitor lineage commitment. Leukemia, 26(11): 2310–2316
CrossRef
Pubmed
Google scholar
|
[74] |
Zhao H, Kalota A, Jin S, Gewirtz A M (2009). The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood, 113(3): 505–516
CrossRef
Pubmed
Google scholar
|
[111] |
Zhou D, Liu K, Sun C W, Pawlik K M, Townes T M (2010). KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet, 42(9): 742–744
CrossRef
Pubmed
Google scholar
|
[72] |
Zhu Y, Wang D, Wang F, Li T, Dong L, Liu H, Ma Y, Jiang F, Yin H, Yan W, Luo M, Tang Z, Zhang G, Wang Q, Zhang J, Zhou J, Yu J (2013). A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis. Nucleic Acids Res, 41(7): 4129–4143
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |