MINI-REVIEW

Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology

  • Lihua Julie Zhu
Expand
  • Department of Molecular, Cell and Cancer Biology, Program in Bioinformatics and Integrated Biology, Program in Molecular Medicine, University of Massachusetts Medical School,Worcester, MA 01605, USA

Received date: 21 Jun 2015

Accepted date: 08 Jul 2015

Published date: 14 Aug 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

CRISPR-Cas (Clustered, Regularly Interspaced, Short Palindromic Repeats – CRISPR-associated (Cas)) RNA guided endonuclease has emerged as the most effective and widely used genome editing technology, which has become the most exciting and rapidly advancing research field. Efficient genome editing by the CRISPR-Cas9 system has been demonstrated in many species, and several laboratories have established CRISPR-Cas9 as a screening tool for systematic genetic analysis, similar to shRNA screening. At least three companies have been founded to leverage this technology for therapeutic uses. To facilitate the implementation of this technology, many software tools have been developed to identify guide RNAs that effectively target a desired genomic region. Here, I provide an overview of the technology, focusing on guide RNA design principles, available software tools and their strengths and weaknesses.

Cite this article

Lihua Julie Zhu . Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology[J]. Frontiers in Biology, 2015 , 10(4) : 289 -296 . DOI: 10.1007/s11515-015-1366-y

Acknowledgements

I would like to thank Dr. Scot Wolfe at Department of Molecular, Cell and Cancer Biology in University of Massachusetts Medical School for his critical review of the manuscript and his excellent suggestions.
1
Bae S, Park J, Kim J S (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30(10): 1473–1475

DOI PMID

2
Chen S, Sanjana N E, Zheng K, Shalem O, Lee K, Shi X, Scott D A, Song J, Pan J Q, Weissleder R, Lee H, Zhang F, Sharp P A (2015). Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 160(6): 1246–1260

DOI PMID

3
Cho S W, Kim S, Kim Y, Kweon J, Kim H S, Bae S, Kim J S (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 24(1): 132–141

DOI PMID

4
Chu S W, Noyes M B, Christensen R G, Pierce B G, Zhu L J, Weng Z, Stormo G D, Wolfe S A (2012). Exploring the DNA-recognition potential of homeodomains. Genome Res, 22(10): 1889–1898

DOI PMID

5
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819–823

DOI PMID

6
Cradick T J, Qiu P, Lee C M, Fine E J, Bao G (2014). COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites. Mol Ther Nucleic Acids, 3(12): e214

DOI PMID

7
Ding Q, Regan S N, Xia Y, Oostrom L A, Cowan C A, Musunuru K (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 12(4): 393–394

DOI PMID

8
Doench J G, Hartenian E, Graham D B, Tothova Z, Hegde M, Smith I, Sullender M, Ebert B L, Xavier R J, Root D E (2014). Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol, 32(12): 1262–1267

DOI PMID

9
Doudna J A, Charpentier E (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213): 1258096

DOI PMID

10
Enuameh M S, Asriyan Y, Richards A, Christensen R G, Hall V L, Kazemian M, Zhu C, Pham H, Cheng Q, Blatti C, Brasefield J A, Basciotta M D, Ou J, McNulty J C, Zhu L J, Celniker S E, Sinha S, Stormo G D, Brodsky M H, Wolfe S A (2013). Global analysis of Drosophila Cys₂-His₂ zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res, 23(6): 928–940

DOI PMID

11
Esvelt K M, Mali P, Braff J L, Moosburner M, Yaung S J, Church G M (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 10(11): 1116–1121

DOI PMID

12
Friedland A E, Tzur Y B, Esvelt K M, Colaiácovo M P, Church G M, Calarco J A (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods, 10(8): 741–743

DOI PMID

13
Fu Y, Sander J D, Reyon D, Cascio V M, Joung J K (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 32(3): 279–284

DOI PMID

14
Gratz S J, Cummings A M, Nguyen J N, Hamm D C, Donohue L K, Harrison M M, Wildonger J, O’Connor-Giles K M (2013). Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4): 1029–1035

DOI PMID

15
Gupta A, Meng X, Zhu L J, Lawson N D, Wolfe S A (2011). Zinc finger protein-dependent and-independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res, 39(1): 381–392

DOI PMID

16
Heigwer F, Kerr G, Boutros M (2014). E-CRISP: fast CRISPR target site identification. Nat Methods, 11(2): 122–123

DOI PMID

17
Horvath P, Barrangou R (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962): 167–170

DOI PMID

18
Hou Z, Zhang Y, Propson N E, Howden S E, Chu L F, Sontheimer E J, Thomson J A (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA, 110(39): 15644–15649

DOI PMID

19
Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y, Fine E J, Wu X, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 31(9): 827–832

DOI PMID

20
Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3): 227–229

DOI PMID

21
Ikmi A, McKinney S A, Delventhal K M, Gibson M C (2014). TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun, 5: 5486

DOI PMID

22
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821

DOI PMID

23
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013). RNA-programmed genome editing in human cells. eLife, 2: e00471

DOI PMID

24
Joung J K, Sander J D (2013). TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol, 14(1): 49–55

DOI PMID

25
Koike-Yusa H, Li Y, Tan E P, Velasco-Herrera M C, Yusa K (2014). Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol, 32(3): 267–273

DOI PMID

26
Koonin E V, Makarova K S (2009). CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep, 1: 95

PMID

27
Koonin E V, Makarova K S (2013). CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol, 10(5): 679–686

DOI PMID

28
Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol, 31(8): 681–683

DOI PMID

29
Lorenz R, Bernhart S H, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler P F, Hofacker I L (2011). ViennaRNA Package 2.0. Algorithms Mol Biol, 6(1): 26

DOI PMID

30
Ma M, Ye A Y, Zheng W, Kong L (2013). A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Res Int, 2013: 270805

DOI PMID

31
Mali P, Aach J, Stranges P B, Esvelt K M, Moosburner M, Kosuri S, Yang L, Church G M (2013a). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 31(9): 833–838

DOI PMID

32
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013b). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826

DOI PMID

33
Meng X, Noyes M B, Zhu L J, Lawson N D, Wolfe S A (2008). Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol, 26(6): 695–701

DOI PMID

34
Prykhozhij S V, Rajan V, Gaston D, Berman J N (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS ONE, 10(3): e0119372

DOI PMID

35
Ran F A, Hsu P D, Lin C Y, Gootenberg J S, Konermann S, Trevino A E, Scott D A, Inoue A, Matoba S, Zhang Y, Zhang F (2013a). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6): 1380–1389

DOI PMID

36
Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F (2013b). Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 8(11): 2281–2308

DOI PMID

37
Sampson T R, Saroj S D, Llewellyn A C, Tzeng Y L, Weiss D S (2013). A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 497(7448): 254–257

DOI PMID

38
Shalem O, Sanjana N E, Hartenian E, Shi X, Scott D A, Mikkelsen T S, Heckl D, Ebert B L, Root D E, Doench J G, Zhang F (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343(6166): 84–87

DOI PMID

39
Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, Wang Y, Brodsky R A, Zhang K, Cheng L, Ye Z (2014). Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 15(1): 12–13

DOI PMID

40
Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol, 32(6): 569–576

DOI PMID

41
Tsai S Q, Zheng Z, Nguyen N T, Liebers M, Topkar V V, Thapar V, Wyvekens N, Khayter C, Iafrate A J, Le L P, Aryee M J, Joung J K (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 33(2): 187–197

DOI PMID

42
Wang T, Wei J J, Sabatini D M, Lander E S (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343(6166): 80–84

DOI PMID

43
Wyman C, Kanaar R (2006). DNA double-strand break repair: all’s well that ends well. Annu Rev Genet, 40(1): 363–383

DOI PMID

44
Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014). CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics

DOI

45
Xu H, Xiao T, Chen C H, Li W, Meyer C, Wu Q, Wu D, Cong L, Zhang F, Liu J S, Brown M, Liu S X (2015). Sequence determinants of improved CRISPR sgRNA design. Genome Res: gr.191452.115

DOI PMID

46
Yang H, Wang H, Shivalila C S, Cheng A W, Shi L, Jaenisch R (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154(6): 1370–1379

DOI PMID

47
Zhu L J, Holmes B R, Aronin N, Brodsky M H (2014). CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS ONE, 9(9): e108424

DOI PMID

Outlines

/