Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology

Lihua Julie Zhu

PDF(974 KB)
PDF(974 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (4) : 289-296. DOI: 10.1007/s11515-015-1366-y
MINI-REVIEW
MINI-REVIEW

Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology

Author information +
History +

Abstract

CRISPR-Cas (Clustered, Regularly Interspaced, Short Palindromic Repeats – CRISPR-associated (Cas)) RNA guided endonuclease has emerged as the most effective and widely used genome editing technology, which has become the most exciting and rapidly advancing research field. Efficient genome editing by the CRISPR-Cas9 system has been demonstrated in many species, and several laboratories have established CRISPR-Cas9 as a screening tool for systematic genetic analysis, similar to shRNA screening. At least three companies have been founded to leverage this technology for therapeutic uses. To facilitate the implementation of this technology, many software tools have been developed to identify guide RNAs that effectively target a desired genomic region. Here, I provide an overview of the technology, focusing on guide RNA design principles, available software tools and their strengths and weaknesses.

Keywords

CRISPR-Cas9 / genome editing / gRNA design / off-target analysis / gRNA efficacy

Cite this article

Download citation ▾
Lihua Julie Zhu. Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology. Front. Biol., 2015, 10(4): 289‒296 https://doi.org/10.1007/s11515-015-1366-y

References

[1]
Bae S, Park J, Kim J S (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30(10): 1473–1475
CrossRef Pubmed Google scholar
[2]
Chen S, Sanjana N E, Zheng K, Shalem O, Lee K, Shi X, Scott D A, Song J, Pan J Q, Weissleder R, Lee H, Zhang F, Sharp P A (2015). Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 160(6): 1246–1260
CrossRef Pubmed Google scholar
[3]
Cho S W, Kim S, Kim Y, Kweon J, Kim H S, Bae S, Kim J S (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 24(1): 132–141
CrossRef Pubmed Google scholar
[4]
Chu S W, Noyes M B, Christensen R G, Pierce B G, Zhu L J, Weng Z, Stormo G D, Wolfe S A (2012). Exploring the DNA-recognition potential of homeodomains. Genome Res, 22(10): 1889–1898
CrossRef Pubmed Google scholar
[5]
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819–823
CrossRef Pubmed Google scholar
[6]
Cradick T J, Qiu P, Lee C M, Fine E J, Bao G (2014). COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites. Mol Ther Nucleic Acids, 3(12): e214
CrossRef Pubmed Google scholar
[7]
Ding Q, Regan S N, Xia Y, Oostrom L A, Cowan C A, Musunuru K (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 12(4): 393–394
CrossRef Pubmed Google scholar
[8]
Doench J G, Hartenian E, Graham D B, Tothova Z, Hegde M, Smith I, Sullender M, Ebert B L, Xavier R J, Root D E (2014). Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol, 32(12): 1262–1267
CrossRef Pubmed Google scholar
[9]
Doudna J A, Charpentier E (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213): 1258096
CrossRef Pubmed Google scholar
[10]
Enuameh M S, Asriyan Y, Richards A, Christensen R G, Hall V L, Kazemian M, Zhu C, Pham H, Cheng Q, Blatti C, Brasefield J A, Basciotta M D, Ou J, McNulty J C, Zhu L J, Celniker S E, Sinha S, Stormo G D, Brodsky M H, Wolfe S A (2013). Global analysis of Drosophila Cys₂-His₂ zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res, 23(6): 928–940
CrossRef Pubmed Google scholar
[11]
Esvelt K M, Mali P, Braff J L, Moosburner M, Yaung S J, Church G M (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 10(11): 1116–1121
CrossRef Pubmed Google scholar
[12]
Friedland A E, Tzur Y B, Esvelt K M, Colaiácovo M P, Church G M, Calarco J A (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods, 10(8): 741–743
CrossRef Pubmed Google scholar
[13]
Fu Y, Sander J D, Reyon D, Cascio V M, Joung J K (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 32(3): 279–284
CrossRef Pubmed Google scholar
[14]
Gratz S J, Cummings A M, Nguyen J N, Hamm D C, Donohue L K, Harrison M M, Wildonger J, O’Connor-Giles K M (2013). Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4): 1029–1035
CrossRef Pubmed Google scholar
[15]
Gupta A, Meng X, Zhu L J, Lawson N D, Wolfe S A (2011). Zinc finger protein-dependent and-independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res, 39(1): 381–392
CrossRef Pubmed Google scholar
[16]
Heigwer F, Kerr G, Boutros M (2014). E-CRISP: fast CRISPR target site identification. Nat Methods, 11(2): 122–123
CrossRef Pubmed Google scholar
[17]
Horvath P, Barrangou R (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962): 167–170
CrossRef Pubmed Google scholar
[18]
Hou Z, Zhang Y, Propson N E, Howden S E, Chu L F, Sontheimer E J, Thomson J A (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA, 110(39): 15644–15649
CrossRef Pubmed Google scholar
[19]
Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y, Fine E J, Wu X, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 31(9): 827–832
CrossRef Pubmed Google scholar
[20]
Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3): 227–229
CrossRef Pubmed Google scholar
[21]
Ikmi A, McKinney S A, Delventhal K M, Gibson M C (2014). TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun, 5: 5486
CrossRef Pubmed Google scholar
[22]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821
CrossRef Pubmed Google scholar
[23]
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013). RNA-programmed genome editing in human cells. eLife, 2: e00471
CrossRef Pubmed Google scholar
[24]
Joung J K, Sander J D (2013). TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol, 14(1): 49–55
CrossRef Pubmed Google scholar
[25]
Koike-Yusa H, Li Y, Tan E P, Velasco-Herrera M C, Yusa K (2014). Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol, 32(3): 267–273
CrossRef Pubmed Google scholar
[26]
Koonin E V, Makarova K S (2009). CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep, 1: 95
Pubmed
[27]
Koonin E V, Makarova K S (2013). CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol, 10(5): 679–686
CrossRef Pubmed Google scholar
[28]
Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol, 31(8): 681–683
CrossRef Pubmed Google scholar
[29]
Lorenz R, Bernhart S H, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler P F, Hofacker I L (2011). ViennaRNA Package 2.0. Algorithms Mol Biol, 6(1): 26
CrossRef Pubmed Google scholar
[30]
Ma M, Ye A Y, Zheng W, Kong L (2013). A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Res Int, 2013: 270805
CrossRef Pubmed Google scholar
[31]
Mali P, Aach J, Stranges P B, Esvelt K M, Moosburner M, Kosuri S, Yang L, Church G M (2013a). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 31(9): 833–838
CrossRef Pubmed Google scholar
[32]
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013b). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826
CrossRef Pubmed Google scholar
[33]
Meng X, Noyes M B, Zhu L J, Lawson N D, Wolfe S A (2008). Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol, 26(6): 695–701
CrossRef Pubmed Google scholar
[34]
Prykhozhij S V, Rajan V, Gaston D, Berman J N (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS ONE, 10(3): e0119372
CrossRef Pubmed Google scholar
[35]
Ran F A, Hsu P D, Lin C Y, Gootenberg J S, Konermann S, Trevino A E, Scott D A, Inoue A, Matoba S, Zhang Y, Zhang F (2013a). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6): 1380–1389
CrossRef Pubmed Google scholar
[36]
Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F (2013b). Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 8(11): 2281–2308
CrossRef Pubmed Google scholar
[37]
Sampson T R, Saroj S D, Llewellyn A C, Tzeng Y L, Weiss D S (2013). A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 497(7448): 254–257
CrossRef Pubmed Google scholar
[38]
Shalem O, Sanjana N E, Hartenian E, Shi X, Scott D A, Mikkelsen T S, Heckl D, Ebert B L, Root D E, Doench J G, Zhang F (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343(6166): 84–87
CrossRef Pubmed Google scholar
[39]
Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, Wang Y, Brodsky R A, Zhang K, Cheng L, Ye Z (2014). Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 15(1): 12–13
CrossRef Pubmed Google scholar
[40]
Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol, 32(6): 569–576
CrossRef Pubmed Google scholar
[41]
Tsai S Q, Zheng Z, Nguyen N T, Liebers M, Topkar V V, Thapar V, Wyvekens N, Khayter C, Iafrate A J, Le L P, Aryee M J, Joung J K (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 33(2): 187–197
CrossRef Pubmed Google scholar
[42]
Wang T, Wei J J, Sabatini D M, Lander E S (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343(6166): 80–84
CrossRef Pubmed Google scholar
[43]
Wyman C, Kanaar R (2006). DNA double-strand break repair: all’s well that ends well. Annu Rev Genet, 40(1): 363–383
CrossRef Pubmed Google scholar
[44]
Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014). CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics
CrossRef Google scholar
[45]
Xu H, Xiao T, Chen C H, Li W, Meyer C, Wu Q, Wu D, Cong L, Zhang F, Liu J S, Brown M, Liu S X (2015). Sequence determinants of improved CRISPR sgRNA design. Genome Res: gr.191452.115
CrossRef Pubmed Google scholar
[46]
Yang H, Wang H, Shivalila C S, Cheng A W, Shi L, Jaenisch R (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154(6): 1370–1379
CrossRef Pubmed Google scholar
[47]
Zhu L J, Holmes B R, Aronin N, Brodsky M H (2014). CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS ONE, 9(9): e108424
CrossRef Pubmed Google scholar

Acknowledgements

I would like to thank Dr. Scot Wolfe at Department of Molecular, Cell and Cancer Biology in University of Massachusetts Medical School for his critical review of the manuscript and his excellent suggestions.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(974 KB)

Accesses

Citations

Detail

Sections
Recommended

/