REVIEW

Identification of cancer stem cells: from leukemia to solid cancers

  • Yinghui HUANG , 1 ,
  • Xiaoxue QIU 2 ,
  • Ji-Long CHEN , 2
Expand
  • 1. China-Japan Union Hospital of Jilin University, Changchun 130033, China
  • 2. CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China

Received date: 06 Sep 2010

Accepted date: 21 Sep 2010

Published date: 01 Oct 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Cancer stem cells (CSCs) are widely considered to be a small cell population in leukemia and many solid cancers with the properties including self-renewal and differentiation to non-tumorigenic cancer cells. Identification and isolation of CSCs significantly depend on the special surface markers of CSCs. Aberrant gene expression and signal transduction contribute to malignancies of CSCs, which result in cancer initiation, progression and recurrence. The inefficient therapy of cancers is mainly attributed to the failure of elimination of the malignant CSCs. However, CSCs have not been detected in all cancers and hierarchical organization of tumors might challenge cancer stem cell models. Additionally, opinions about the validity of the CSC hypothesis, the biological properties of CSCs, and the relevance of CSCs to cancer therapy differ widely. In this review, we discuss the debate of cancer stem cell model, the parameters by which CSCs can or cannot be defined, and the advances in the therapy of CSCs.

Cite this article

Yinghui HUANG , Xiaoxue QIU , Ji-Long CHEN . Identification of cancer stem cells: from leukemia to solid cancers[J]. Frontiers in Biology, 2010 , 5(5) : 407 -416 . DOI: 10.1007/s11515-010-0850-7

Acknowledgement

This work was supported by National Basic Research Program (973 Project) of China (No. 2009CB918902), Hundreds of Talents Program of Chinese Academy of Sciences 2009-2014, and a grant from Beijing Institutes of Life Science, Chinese Academy of Sciences.
1
Abraham B K, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005). Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res, 11(3): 1154–1159

2
Al-Hajj M, Wicha M S, Benito-Hernandez A, Morrison S J, Clarke M F (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 100(7): 3983–3988

DOI

3
Bissell M J, Labarge M A (2005). Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell, 7(1): 17–23

4
Blair A, Hogge D E, Ailles L E, Lansdorp P M, Sutherland H J (1997). Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood, 89(9): 3104–3112

5
Bonnet D, Dick J E (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 3(7): 730–737

DOI

6
Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005). Opinion: migrating cancer stem cells- an integrated concept of malignant tumour progression. Nat Rev Cancer, 5(9): 744–749

DOI

7
Bruce W R, Van Der Gaag H (1963). A Quantitative Assay for the Number of Murine Lymphoma Cells Capable of Proliferation in Vivo. Nature, 199: 79–80

DOI

8
Bui M R, Hodson V, King T, Leopold D, Dai S, Fiolkoski V, Oakes S, Duke R, Apelian D, Franzusoff A, DeGregori J (2010). Mutation-specific control of BCR-ABL T315I positive leukemia with a recombinant yeast-based therapeutic vaccine in a murine model. Vaccine, 28(37): 6028–6035

DOI

9
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 9(6): 582–589

DOI

10
Campbell L L, Polyak K (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle, 6(19): 2332–2338

DOI

11
Carpten J D, Faber A L, Horn C, Donoho G P, Briggs S L, Robbins C M, Hostetter G, Boguslawski S, Moses T Y, Savage S, Uhlik M, Lin A, Du J, Qian Y W, Zeckner D J, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai M H, Blanchard K L, Thomas J E (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 448(7152): 439–444

DOI

12
Chen J L, Limnander A, Rothman P B (2008). Pim-1 and Pim-2 kinases are required for efficient pre-B-cell transformation by v-Abl oncogene. Blood, 111(3): 1677–1685

DOI

13
Clarke M F, Dick J E, Dirks P B, Eaves C J, Jamieson C H, Jones D L, Visvader J, Weissman I L, Wahl G M (2006). Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res, 66, 9339–9344

DOI

14
Collins A T, Berry P A, Hyde C, Stower M J, Maitland N J (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 65(23): 10946–10951

DOI

15
Deininger M W, Goldman J M, Melo J V (2000). The molecular biology of chronic myeloid leukemia. Blood, 96(10): 3343–3356

16
Druker B J, Talpaz M, Resta D J, Peng B, Buchdunger E, Ford J M, Lydon N B, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers C L (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med, 344(14): 1031–1037

DOI

17
Fang D, Nguyen T K, Leishear K, Finko R, Kulp A N, Hotz S, Van Belle P A, Xu X, Elder D E, Herlyn M (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res, 65(20): 9328–9337

DOI

18
Ginestier C, Hur M H, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer C G, Liu S, Schott A, Hayes D, Birnbaum D, Wicha M S, Dontu G (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1(5): 555–567

DOI

19
Gregory M A, Phang T L, Neviani P, Alvarez-Calderon F, Eide C A, O’Hare T, Zaberezhnyy V, Williams R T, Druker B J, Perrotti D, Degregori J (2010). Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl. Cancer Cell, 18(1): 74–87

DOI

20
Gregory P A, Bracken C P, Bert A G, Goodall G J (2008). MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle, 7(20): 3112–3118

21
Guo G, Qiu X, Wang S, Chen Y, Rothman P B, Wang Z, Chen Y, Wang G, Chen J L (2010). Oncogenic E17K mutation in the pleckstrin homology domain of AKT1 promotes v-Abl-mediated pre-B-cell transformation and survival of Pim-deficient cells. Oncogene, 29(26): 3845–3853

DOI

22
Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, Dahlberg S, Neuberg D, Moreau L A, Winter S S, Larson R, Zhang J, Protopopov A, Chin L, Pandolfi P P, Silverman L B, Hunger S P, Sallan S E, Look A T (2009). High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood, 114(3): 647–650

DOI

23
Guzman M L, Jordan C T (2004). Considerations for targeting malignant stem cells in leukemia. Cancer Control, 11(2): 97–104

24
Haan S, Wüller S, Kaczor J, Rolvering C, Nöcker T, Behrmann I, Haan C (2009). SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling. Oncogene, 28(34): 3069–3080

DOI

25
Hemmati H D, Nakano I, Lazareff J A, Masterman-Smith M, Geschwind D H, Bronner-Fraser M, Kornblum H I (2003). Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A, 100(25): 15178–15183

DOI

26
Herman S E, Gordon A L, Wagner A J, Heerema N A, Zhao W, Flynn J M, Jones J, Andritsos L, Puri K D, Lannutti B J, Giese N A, Zhang X, Wei L, Byrd J C, Johnson A J (2010). The phosphatidylinositol 3-kinase-{delta} inhibitor CAL-101 demonstrates promising pre-clinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood, 2010(Jun): 3 (Epub ahead of print)

27
Hermann P C, Huber S L, Herrler T, Aicher A, Ellwart J W, Guba M, Bruns C J, Heeschen C (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3): 313–323

DOI

28
Hu Z, Pan X F, Wu F Q, Ma L Y, Liu D P, Liu Y, Feng T T, Meng F Y, Liu X L, Jiang Q L, Chen X Q, Liu J L, Liu P, Chen Z, Chen S J, Zhou G B (2009). Synergy between proteasome inhibitors and imatinib mesylate in chronic myeloid leukemia. PLoS One, 4(7): e6257

DOI

29
Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan D E, Teruya-Feldstein J, Pandolfi P P (2008). PML targeting eradicates quiescent leukaemia-initiating cells. Nature, 453(7198): 1072–1078

DOI

30
Jabbour E, Cortes J, Kantarjian H (2010). Nilotinib for the treatment of chronic myeloid leukemia: An evidence-based review. Core Evid, 4: 207–213

31
Jamieson C H, Ailles L E, Dylla S J, Muijtjens M, Jones C, Zehnder J L, Gotlib J, Li K, Manz M G, Keating A, Sawyers C L, Weissman I L (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med, 351(7): 657–667

DOI

32
Jiang X, Forrest D, Nicolini F, Turhan A, Guilhot J, Yip C, Holyoake T, Jorgensen H, Lambie K, Saw K M, Pang E, Vukovic R, Lehn P, Ringrose A, Yu M, Brinkman R R, Smith C, Eaves A, Eaves C (2010). Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood, 116(12): 2112–2121

DOI

33
Jordan C T, Upchurch D, Szilvassy S J, Guzman M L, Howard D S, Pettigrew A L, Meyerrose T, Rossi R, Grimes B, Rizzieri D A, Luger S M, Phillips G L (2000). The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia, 14(10): 1777–1784

DOI

34
Jørgensen H G, Holyoake T L (2007). Characterization of cancer stem cells in chronic myeloid leukaemia. Biochem Soc Trans, 35(Pt 5): 1347–1351

35
Karnoub A E, Dash A B, Vo A P, Sullivan A, Brooks M W, Bell G W, Richardson A L, Polyak K, Tubo R, Weinberg R A (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162): 557–563

DOI

36
Kelly P N, Dakic A, Adams J M, Nutt S L, Strasser A (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317(5836): 337

DOI

37
Kharas M G, Okabe R, Ganis J J, Gozo M, Khandan T, Paktinat M, Gilliland D G, Gritsman K (2010). Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood, 115(7): 1406–1415

DOI

38
Kim C F, Jackson E L, Woolfenden A E, Lawrence S, Babar I, Vogel S, Crowley D, Bronson R T, Jacks T (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6): 823–835

39
Kim K Y, Kim S U, Leung P C, Jeung E B, Choi K C (2010). Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: tumor-tropic potential and inhibition of ovarian cancer cell growth. Cancer Sci, 101(4): 955–962

DOI

40
Krause D S, Lazarides K, von Andrian U H, Van Etten R A (2006). Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med, 12(10): 1175–1180

DOI

41
Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W, Huelsken J (2008). Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature, 452(7187): 650–653

DOI

42
Mani S A, Guo W, Liao M J, Eaton E N, Ayyanan A, Zhou A Y, Brooks M, Reinhard F, Zhang C C, Shipitsin M, Campbell L L, Polyak K, Brisken C, Yang J, Weinberg R A (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4): 704–715

43
Mantovani A (2009). Cancer: Inflaming metastasis. Nature, 457(7225): 36–37

DOI

44
Moshaver B, van Rhenen A, Kelder A, van der Pol M, Terwijn M, Bachas C, Westra A H, Ossenkoppele G J, Zweegman S, Schuurhuis G J (2008). Identification of a small subpopulation of candidate leukemia initiating cells in the side population (sp) of patients with acute myeloid leukemia. Stem Cells.

45
Murray P J (2007). The JAK-STAT signaling pathway: input and output integration. J Immunol, 178(5): 2623–2629

46
Nasr R, Guillemin M C, Ferhi O, Soilihi H, Peres L, Berthier C, Rousselot P, Robledo-Sarmiento M, Lallemand-Breitenbach V, Gourmel B, Vitoux D, Pandolfi P P, Rochette-Egly C, Zhu J, de Thé H (2008). Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med, 14(12): 1333–1342

DOI

47
Nusse R (2003). Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development, 130(22): 5297–5305

DOI

48
O’Brien C A, Pollett A, Gallinger S, Dick J E (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123): 106–110

DOI

49
Peng C, Chen Y, Yang Z, Zhang H, Osterby L, Rosmarin A G, Li S (2010). PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice. Blood, 115(3): 626–635

DOI

50
Piccirillo S G, Reynolds B A, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi A L (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 444(7120): 761–765

DOI

51
Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti M A, Daidone M G (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res, 65(13): 5506–5511

DOI

52
Pradhan A, Lambert Q T, Reuther G W (2007). Transformation of hematopoietic cells and activation of JAK2-V617F by IL-27R, a component of a heterodimeric type I cytokine receptor. Proc Natl Acad Sci U S A, 104(47): 18502–18507

DOI

53
Quintana E, Shackleton M, Sabel M S, Fullen D R, Johnson T M, Morrison S J (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222): 593–598

DOI

54
Reya T, Duncan A W, Ailles L, Domen J, Scherer D C, Willert K, Hintz L, Nusse R, Weissman I L (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423(6938): 409–414

DOI

55
Reya T, Morrison S J, Clarke M F, Weissman I L (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859): 105–111

DOI

56
Savona M, Talpaz M (2008). Getting to the stem of chronic myeloid leukaemia. Nat Rev Cancer, 8(5): 341–350

DOI

57
Singh S K, Hawkins C, Clarke I D, Squire J A, Bayani J, Hide T, Henkelman R M, Cusimano M D, Dirks P B (2004). Identification of human brain tumour initiating cells. Nature, 432(7015): 396–401

DOI

58
Szotek P P, Pieretti-Vanmarcke R, Masiakos P T, Dinulescu D M, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin D T, Donahoe P K (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A, 103(30): 11154–11159

DOI

59
Thiery J P (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2(6): 442–454

DOI

60
Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy J D Jr (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med, 349(26): 2483–2494

DOI

61
van der Pol M A, Feller N, Roseboom M, Moshaver B, Westra G, Broxterman H J, Ossenkoppele G J, Schuurhuis G J (2003). Assessment of the normal or leukemic nature of CD34+ cells in acute myeloid leukemia with low percentages of CD34 cells. Haematologica, 88(9): 983–993

62
van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H (2002). Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem, 277(20): 17901–17905

DOI

63
Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler M U, Ganser A, Eder M, Scherr M (2007). Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood, 109(10): 4399–4405

DOI

64
Viswanathan S R, Daley G Q, Gregory R I (2008). Selective blockade of microRNA processing by Lin28. Science, 320(5872): 97–100

DOI

65
Wang J C, Dick J E (2005). Cancer stem cells: lessons from leukemia. Trends Cell Biol, 15(9): 494–501

DOI

66
Wang Y, Krivtsov A V, Sinha A U, North T E, Goessling W, Feng Z, Zon L I, Armstrong S A (2010). The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science, 327(5973): 1650–1653

DOI

67
Williams R T, den Besten W, Sherr C J (2007). Cytokine-dependent imatinib resistance in mouse BCR-ABL+, Arf-null lymphoblastic leukemia. Genes Dev, 21(18): 2283–2287

DOI

68
Wong D J, Liu H, Ridky T W, Cassarino D, Segal E, Chang H Y (2008). Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell, 2(4): 333–344

DOI

69
Wuchter C, Ratei R, Spahn G, Schoch C, Harbott J, Schnittger S, Haferlach T, Creutzig U, Sperling C, Karawajew L, Ludwig W D (2001). Impact of CD133 (AC133) and CD90 expression analysis for acute leukemia immunophenotyping. Haematologica, 86(2): 154–161

70
Yang Y M, Chang J W (2008). Current status and issues in cancer stem cell study. Cancer Invest, 26(7): 741–755

DOI

71
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6): 1109–1123

72
Zhang B, Strauss A C, Chu S, Li M, Ho Y, Shiang K D, Snyder D S, Huettner C S, Shultz L, Holyoake T, Bhatia R (2010). Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell, 17(5): 427–442

DOI

73
Zhao C, Blum J, Chen A, Kwon H Y, Jung S H, Cook J M, Lagoo A, Reya T (2007). Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell, 12(6): 528–541

DOI

Outlines

/