A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease
Received date: 29 Jun 2015
Accepted date: 14 Jul 2015
Published date: 14 Aug 2015
Copyright
Genome-wide analyses of metazoan messenger RNA (mRNA) species are unveiling the extensive transcriptional diversity generated by alternative splicing (AS). Research is also beginning to identify the splicing factors and AS events required to maintain the balance between stem cell renewal (i.e stemness properties) and differentiation. One set of proteins at the center of spliceosome biogenesis are the survival motor neuron (SMN) complex constituents, which have a critical role in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) in all cells. In this review we discuss what is currently known about how AS controls pluripotency and cell fate and consider how an increased requirement for splicing factors, including SMN, helps to maintain an enrichment of stem cell-specific AS events. Furthermore, we highlight studies showing that mutations in specific splicing factors can lead to the aberrant development, and cause targeted degeneration of the nervous system. Using SMN as an example, we discuss the perspective of how stem cell-specific changes in splicing factors can lead to developmental defects and the selective degeneration of particular tissues. Finally we consider the expanding role of SMN, and other splicing factors, in the regulation of gene expression in stem cell biology, thereby providing insight into a number of debilitating diseases.
Stuart J. Grice , Ji-Long Liu . A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease[J]. Frontiers in Biology, 2015 , 10(4) : 297 -309 . DOI: 10.1007/s11515-015-1368-9
1 |
Barash Y, Calarco J A, Gao W, Pan Q, Wang X, Shai O, Blencowe B J, Frey B J (2010). Deciphering the splicing code. Nature, 465(7294): 53–59
|
2 |
Bäumer D, Lee S, Nicholson G, Davies J L, Parkinson N J, Murray L M, Gillingwater T H, Ansorge O, Davies K E, Talbot K (2009). Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet, 5(12): e1000773
|
3 |
Beggs J D (2005). Lsm proteins and RNA processing. Biochem Soc Trans, 33(Pt 3): 433–438
|
4 |
Borg R, Cauchi R J (2014). GEMINs: potential therapeutic targets for spinal muscular atrophy? Front Neurosci, 8: 325
|
5 |
Boulisfane N, Choleza M, Rage F, Neel H, Soret J, Bordonné R (2011). Impaired minor tri-snRNP assembly generates differential splicing defects of U12-type introns in lymphoblasts derived from a type I SMA patient. Hum Mol Genet, 20(4): 641–648
|
6 |
Bricceno K V, Martinez T, Leikina E, Duguez S, Partridge T A, Chernomordik L V, Fischbeck K H, Sumner C J, Burnett B G (2014). Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Hum Mol Genet, 23(18): 4745–4757
|
7 |
Burghes A H, Beattie C E (2009). Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci, 10(8): 597–609
|
8 |
Burlet P, Huber C, Bertrandy S, Ludosky M A, Zwaenepoel I, Clermont O, Roume J, Delezoide A L, Cartaud J, Munnich A, Lefebvre S (1998). The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet, 7(12): 1927–1933
|
9 |
Carvalho T, Almeida F, Calapez A, Lafarga M, Berciano M T, Carmo-Fonseca M (1999). The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body. J Cell Biol, 147(4): 715–728
|
10 |
Cauchi R J ( 2010). SMN and Gemins: ‘we are family’ ... or are we?: insights into the partnership between Gemins and the spinal muscular atrophy disease protein SMN. BioEssays, 32: 1077–1089
|
11 |
Cauchi R J, Sanchez-Pulido L, Liu J L (2010). Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies. Exp Cell Res, 316(14): 2354–2364
|
12 |
Chang W F, Xu J, Chang C C, Yang S H, Li H Y, Hsieh-Li H M, Tsai M H, Wu S C, Cheng W T, Liu J L, Sung L Y (2015). SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Brain Struct Funct, 220(3): 1539–1553
|
13 |
Chen C, Nott T J, Jin J, Pawson T (2011). Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol, 12(10): 629–642
|
14 |
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega V B, Wong E, Orlov Y L, Zhang W, Jiang J, Loh Y H, Yeo H C, Yeo Z X, Narang V, Govindarajan K R, Leong B, Shahab A, Ruan Y, Bourque G, Sung W K, Clarke N D, Wei C L, Ng H H (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6): 1106–1117
|
15 |
Coady T H, Lorson C L (2011). SMN in spinal muscular atrophy and snRNP biogenesis. Wiley Interdiscip Rev RNA, 2(4): 546–564
|
16 |
Cusin V, Clermont O, Gérard B, Chantereau D, Elion J (2003). Prevalence of SMN1 deletion and duplication in carrier and normal populations: implication for genetic counselling. J Med Genet, 40(4): e39
|
17 |
David C J, Manley J L (2010). Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev, 24(21): 2343–2364
|
18 |
Dixon J R, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget J E, Lee A Y, Ye Z, Kim A, Rajagopal N, Xie W, Diao Y, Liang J, Zhao H, Lobanenkov V V, Ecker J R, Thomson J A, Ren B (2015). Chromatin architecture reorganization during stem cell differentiation. Nature, 518(7539): 331–336
|
19 |
Edery P, Marcaillou C, Sahbatou M, Labalme A, Chastang J, Touraine R, Tubacher E, Senni F, Bober M B, Nampoothiri S, Jouk P S, Steichen E, Berland S, Toutain A, Wise C A, Sanlaville D, Rousseau F, Clerget-Darpoux F, Leutenegger A L (2011). Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Science, 332(6026): 240–243
|
20 |
Fallini C, Bassell G J, Rossoll W (2012). Spinal muscular atrophy: the role of SMN in axonal mRNA regulation. Brain Res, 1462: 81–92
|
21 |
Faustino N A, Cooper T A (2003). Pre-mRNA splicing and human disease. Genes Dev, 17(4): 419–437
|
22 |
Feng D, Xie J (2013). Aberrant splicing in neurological diseases. Wiley Interdiscip Rev RNA, 4(6): 631–649
|
23 |
Fischer U, Englbrecht C, Chari A (2011). Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdiscip Rev RNA, 2(5): 718–731
|
24 |
Fischer U, Liu Q, Dreyfuss G (1997). The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell, 90(6): 1023–1029
|
25 |
Forbes D J, Kirschner M W, Caput D, Dahlberg J E, Lund E (1984). Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos of Xenopus laevis. Cell, 38(3): 681–689
|
26 |
Gabanella F, Butchbach M E, Saieva L, Carissimi C, Burghes A H, Pellizzoni L (2007). Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs. PLoS ONE, 2(9): e921
|
27 |
Gabanella F, Carissimi C, Usiello A, Pellizzoni L (2005). The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum Mol Genet, 14(23): 3629–3642
|
28 |
Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H K, Alvarez M, Talukder S, Pan Q, Mazzoni E O, Nedelec S, Wichterle H, Woltjen K, Hughes T R, Zandstra P W, Nagy A, Wrana J L, Blencowe B J (2011). An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell, 147(1): 132–146
|
29 |
Gan Q, Chepelev I, Wei G, Tarayrah L, Cui K, Zhao K, Chen X (2010). Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res, 20(7): 763–783
|
30 |
Ghosh S, Marchand V, Gáspár I, Ephrussi A (2012). Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nat Struct Mol Biol, 19(4): 441–449
|
31 |
Gogliotti R G, Quinlan K A, Barlow C B, Heier C R, Heckman C J, Didonato C J (2012). Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci, 32(11): 3818–3829
|
32 |
Graubert T A, Shen D, Ding L, Okeyo-Owuor T, Lunn C L, Shao J, Krysiak K, Harris C C, Koboldt D C, Larson D E, McLellan M D, Dooling D J, Abbott R M, Fulton R S, Schmidt H, Kalicki-Veizer J, O’Laughlin M, Grillot M, Baty J, Heath S, Frater J L, Nasim T, Link D C, Tomasson M H, Westervelt P, DiPersio J F, Mardis E R, Ley T J, Wilson R K, Walter M J (2012). Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet, 44(1): 53–57
|
33 |
Graveley B R (2011). Splicing up pluripotency. Cell, 147(1): 22–24
|
34 |
Graveley B R, Hertel K J, Maniatis T (2001). The role of U2AF35 and U2AF65 in enhancer-dependent splicing. RNA, 7(6): 806–818
|
35 |
Grice S J, Liu J L (2011). Survival motor neuron protein regulates stem cell division, proliferation, and differentiation in Drosophila. PLoS Genet, 7(4): e1002030
|
36 |
Grice S J, Sleigh J N, Liu J L, Sattelle D B (2011). Invertebrate models of spinal muscular atrophy: insights into mechanisms and potential therapeutics. BioEssays, 33: 956–965
|
37 |
Grice S J, Sleigh J N, Motley W W, Liu J L, Burgess R W, Talbot K, Cader M Z (2015). Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet, 24(15): 4397–4406
|
38 |
Halfar K, Rommel C, Stocker H, Hafen E (2001). Ras controls growth, survival and differentiation in the Drosophila eye by different thresholds of MAP kinase activity. Development, 128(9): 1687–1696
|
39 |
Hamilton G, Gillingwater T H (2013). Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med, 19(1): 40–50
|
40 |
Han H, Irimia M, Ross P J, Sung H K, Alipanahi B, David L, Golipour A, Gabut M, Michael I P, Nachman E N, Wang E, Trcka D, Thompson T, O’Hanlon D, Slobodeniuc V, Barbosa-Morais N L, Burge C B, Moffat J, Frey B J, Nagy A, Ellis J, Wrana J L, Blencowe B J (2013). MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature, 498(7453): 241–245
|
41 |
Hayhurst M, Wagner A K, Cerletti M, Wagers A J, Rubin L L (2012). A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein. Dev Biol, 368(2): 323–334
|
42 |
He H, Liyanarachchi S, Akagi K, Nagy R, Li J, Dietrich R C, Li W, Sebastian N, Wen B, Xin B, Singh J, Yan P, Alder H, Haan E, Wieczorek D, Albrecht B, Puffenberger E, Wang H, Westman J A, Padgett R A, Symer D E, de la Chapelle A (2011). Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science, 332(6026): 238–240
|
43 |
Hinas A, Larsson P, Avesson L, Kirsebom L A, Virtanen A, Söderbom F (2006). Identification of the major spliceosomal RNAs in Dictyostelium discoideum reveals developmentally regulated U2 variants and polyadenylated snRNAs. Eukaryot Cell, 5(6): 924–934
|
44 |
Hua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett C F, Krainer A R (2011). Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature, 478(7367): 123–126
|
45 |
Huen M S, Sy S M, Leung K M, Ching Y P, Tipoe G L, Man C, Dong S, Chen J (2010). SON is a spliceosome-associated factor required for mitotic progression. Cell Cycle, 9(13): 2679–2685
|
46 |
Hunter G, Aghamaleky Sarvestany A, Roche S L, Symes R C, Gillingwater T H (2014). SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy. Hum Mol Genet, 23(9): 2235–2250
|
47 |
Huo Q, Kayikci M, Odermatt P, Meyer K, Michels O, Saxena S, Ule J, Schümperli D (2014). Splicing changes in SMA mouse motoneurons and SMN-depleted neuroblastoma cells: evidence for involvement of splicing regulatory proteins. RNA Biol, 11(11): 1430–1446
|
48 |
Jia Y, Mu J C, Ackerman S L (2012). Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell, 148(1–2): 296–308
|
49 |
Jodelka F M, Ebert A D, Duelli D M, Hastings M L (2010). A feedback loop regulates splicing of the spinal muscular atrophy-modifying gene, SMN2. Hum Mol Genet, 19(24): 4906–4917
|
50 |
Jones K W, Gorzynski K, Hales C M, Fischer U, Badbanchi F, Terns R M, Terns M P (2001). Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin. J Biol Chem, 276(42): 38645–38651
|
51 |
Jurica M S, Moore M J (2003). Pre-mRNA splicing: awash in a sea of proteins. Mol Cell, 12(1): 5–14
|
52 |
Kerins J A, Hanazawa M, Dorsett M, Schedl T (2010). PRP-17 and the pre-mRNA splicing pathway are preferentially required for the proliferation versus meiotic development decision and germline sex determination in Caenorhabditis elegans. Dev Dyn, 239: 1555–1572
|
53 |
Krastev D B, Slabicki M, Paszkowski-Rogacz M, Hubner N C, Junqueira M, Shevchenko A, Mann M, Neugebauer K M, Buchholz F (2011). A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol, 13(7): 809–818
|
54 |
Laggerbauer B, Liu S, Makarov E, Vornlocher H P, Makarova O, Ingelfinger D, Achsel T, Lührmann R (2005). The human U5 snRNP 52K protein (CD2BP2) interacts with U5-102K (hPrp6), a U4/U6.U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation. RNA, 11(5): 598–608
|
55 |
Lanner F, Rossant J (2010). The role of FGF/Erk signaling in pluripotent cells. Development, 137(20): 3351–3360
|
56 |
Le T T, McGovern V L, Alwine I E, Wang X, Massoni-Laporte A, Rich M M, Burghes A H (2011). Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet, 20(18): 3578–3591
|
57 |
Lee L, Davies S E, Liu J L (2009). The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway. Dev Biol, 332(1): 142–155
|
58 |
Lee S, Sayin A, Cauchi R J, Grice S, Burdett H, Baban D, van den Heuvel M (2008). Genome-wide expression analysis of a spinal muscular atrophy model: towards discovery of new drug targets. PLoS ONE, 3(1): e1404
|
59 |
Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995). Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 80(1): 155–165
|
60 |
Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997). Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet, 16(3): 265–269
|
61 |
Lefebvre S, Burlet P, Viollet L, Bertrandy S, Huber C, Belser C, Munnich A (2002). A novel association of the SMN protein with two major non-ribosomal nucleolar proteins and its implication in spinal muscular atrophy. Hum Mol Genet, 11(9): 1017–1027
|
62 |
Liu J L, Gall J G (2007). U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc Natl Acad Sci USA, 104(28): 11655–11659
|
63 |
Liu J L, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall J G (2006). The Drosophila melanogaster Cajal body. J Cell Biol, 172(6): 875–884
|
64 |
Liu J L, Wu Z, Nizami Z, Deryusheva S, Rajendra T K, Beumer K J, Gao H, Matera A G, Carroll D, Gall J G (2009). Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell, 20(6): 1661–1670
|
65 |
Liu Q, Dreyfuss G (1996). A novel nuclear structure containing the survival of motor neurons protein. EMBO J, 15(14): 3555–3565
|
66 |
Livyatan I, Meshorer E (2013). SON sheds light on RNA splicing and pluripotency. Nat Cell Biol, 15(10): 1139–1140
|
67 |
Loh Y H, Wu Q, Chew J L, Vega V B, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong K Y, Sung K W, Lee C W, Zhao X D, Chiu K P, Lipovich L, Kuznetsov V A, Robson P, Stanton L W, Wei C L, Ruan Y, Lim B, Ng H H (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 38(4): 431–440
|
68 |
Lorson C L, Androphy E J (2000). An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet, 9(2): 259–265
|
69 |
Lotti F, Imlach W L, Saieva L, Beck E S, Hao T, Li D K, Jiao W, Mentis G Z, Beattie C E, McCabe B D, Pellizzoni L (2012). An SMN-dependent U12 splicing event essential for motor circuit function. Cell, 151(2): 440–454
|
70 |
Lund E, Kahan B, Dahlberg J E (1985). Differential control of U1 small nuclear RNA expression during mouse development. Science, 229(4719): 1271–1274
|
71 |
Martínez-Hernández R, Bernal S, Also-Rallo E, Alías L, Barceló M J, Hereu M, Esquerda J E, Tizzano E F (2013). Synaptic defects in type I spinal muscular atrophy in human development. J Pathol, 229(1): 49–61
|
72 |
Maurer-Stroh S, Dickens N J, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting C P (2003). The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci, 28(2): 69–74
|
73 |
Mayshar Y, Rom E, Chumakov I, Kronman A, Yayon A, Benvenisty N (2008). Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells, 26(3): 767–774
|
74 |
McGivern J V, Patitucci T N, Nord J A, Barabas M E, Stucky C L, Ebert A D (2013). Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production. Glia, 61(9): 1418–1428
|
75 |
Monani U R, Coovert D D, Burghes A H (2000). Animal models of spinal muscular atrophy. Hum Mol Genet, 9(16): 2451–2457
|
76 |
Morency E, Sabra M, Catez F, Texier P, Lomonte P (2007). A novel cell response triggered by interphase centromere structural instability. J Cell Biol, 177(5): 757–768
|
77 |
Neumüller R A, Richter C, Fischer A, Novatchkova M, Neumüller K G, Knoblich J A (2011). Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell, 8(5): 580–593
|
78 |
Niwa H, Miyazaki J, Smith A G (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24(4): 372–376
|
79 |
O’Reilly D, Dienstbier M, Cowley S A, Vazquez P, Drozdz M, Taylor S, James W S, Murphy S (2013). Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res, 23(2): 281–291
|
80 |
Ohta S, Nishida E, Yamanaka S, Yamamoto T (2013). Global splicing pattern reversion during somatic cell reprogramming. Cell Reports, 5(2): 357–366
|
81 |
Ozsolak F, Milos P M (2011). RNA sequencing: advances, challenges and opportunities. Nat Rev Genet, 12(2): 87–98
|
82 |
Patel A A, Steitz J A (2003). Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol, 4(12): 960–970
|
83 |
Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998). A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell, 95(5): 615–624
|
84 |
Praveen K, Wen Y, Matera A G (2012). A Drosophila model of spinal muscular atrophy uncouples snRNP biogenesis functions of survival motor neuron from locomotion and viability defects. Cell Reports, 1(6): 624–631
|
85 |
Ruggiu M, McGovern V L, Lotti F, Saieva L, Li D K, Kariya S, Monani U R, Burghes A H, Pellizzoni L (2012). A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol, 32(1): 126–138
|
86 |
Sabra M, Texier P, El Maalouf J, Lomonte P (2013). The Tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated lysine 79 of histone H3. J Cell Sci, 126(Pt 16): 3664–3677
|
87 |
Salomonis N, Schlieve C R, Pereira L, Wahlquist C, Colas A, Zambon A C, Vranizan K, Spindler M J, Pico A R, Cline M S, Clark T A, Williams A, Blume J E, Samal E, Mercola M, Merrill B J, Conklin B R (2010). Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA, 107(23): 10514–10519
|
88 |
Salzler H R, Tatomer D C, Malek P Y, McDaniel S L, Orlando A N, Marzluff W F, Duronio R J (2013). A sequence in the Drosophila H3-H4 Promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs. Dev Cell, 24(6): 623–634
|
89 |
Scamborova P, Wong A, Steitz J A (2004). An intronic enhancer regulates splicing of the twintron of Drosophila melanogaster prospero pre-mRNA by two different spliceosomes. Mol Cell Biol, 24(5): 1855–1869
|
90 |
Shafey D, Côté P D, Kothary R (2005). Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology. Exp Cell Res, 311(1): 49–61
|
91 |
Shirai C L, Ley J N, White B S, Kim S, Tibbitts J, Shao J, Ndonwi M, Wadugu B, Duncavage E J, Okeyo-Owuor T, Liu T, Griffith M, McGrath S, Magrini V, Fulton R S, Fronick C, O’Laughlin M, Graubert T A, Walter M J (2015). Mutant U2AF1 Expression Alters Hematopoiesis and Pre-mRNA Splicing In Vivo. Cancer Cell, 27(5): 631–643
|
92 |
Sierra-Montes J M, Pereira-Simon S, Smail S S, Herrera R J (2005). The silk moth Bombyx mori U1 and U2 snRNA variants are differentially expressed. Gene, 352: 127–136
|
93 |
Sleigh J N, Barreiro-Iglesias A, Oliver P L, Biba A, Becker T, Davies K E, Becker C G, Talbot K (2014a). Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet, 23(4): 855–869
|
94 |
Sleigh J N, Gillingwater T H, Talbot K (2011). The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis Model Mech, 4(4): 457–467
|
95 |
Sleigh J N, Grice S J, Burgess R W, Talbot K, Cader M Z (2014b). Neuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot-Marie-Tooth type 2D mice. Hum Mol Genet, 23(10): 2639–2650
|
96 |
Sleigh J N, Grice S J, Davies K E, Talbot K (2013). Spinal muscular atrophy at the crossroads of basic science and therapy. Neuromuscul Disord, 23(1): 96
|
97 |
Sousa-Nunes R, Cheng L Y, Gould A P (2010). Regulating neural proliferation in the Drosophila CNS. Curr Opin Neurobiol, 20(1): 50–57
|
98 |
Sterne-Weiler T, Sanford J R (2014). Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol, 15(1): 201
|
99 |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872
|
100 |
Thornton G K, Woods C G (2009). Primary microcephaly: do all roads lead to Rome? Trends Genet, 25(11): 501–510
|
101 |
Tisdale S, Lotti F, Saieva L, Van Meerbeke J P, Crawford T O, Sumner C J, Mentis G Z, Pellizzoni L (2013). SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3′-end formation of histone mRNAs. Cell Reports, 5(5): 1187–1195
|
102 |
Turunen J J, Niemelä E H, Verma B, Frilander M J (2013). The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA, 4(1): 61–76
|
103 |
Valadkhan S, Jaladat Y (2010). The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics, 10(22): 4128–4141
|
104 |
Venables J P, Lapasset L, Gadea G, Fort P, Klinck R, Irimia M, Vignal E, Thibault P, Prinos P, Chabot B, Abou Elela S, Roux P, Lemaitre J M, Tazi J (2013). MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nat Commun, 4: 2480
|
105 |
Verheggen C, Mouaikel J, Thiry M, Blanchard J M, Tollervey D, Bordonné R, Lafontaine D L, Bertrand E (2001). Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J, 20(19): 5480–5490
|
106 |
Wahl M C, Will C L, Lührmann R (2009). The spliceosome: design principles of a dynamic RNP machine. Cell, 136(4): 701–718
|
107 |
Wan L, Battle D J, Yong J, Gubitz A K, Kolb S J, Wang J, Dreyfuss G (2005). The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol Cell Biol, 25(13): 5543–5551
|
108 |
Wang C, Wilson-Berry L, Schedl T, Hansen D(2012). TEG-1 CD2BP2 regulates stem cell proliferation and sex determination in the C. elegans germ line and physically interacts with the UAF-1 U2AF65 splicing factor. Deve Dyn, 241: 505–521
|
109 |
Wang E T, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456(7221): 470–476
|
110 |
Will C L, Schneider C, Reed R, Lührmann R (1999). Identification of both shared and distinct proteins in the major and minor spliceosomes. Science, 284(5422): 2003–2005
|
111 |
Winkler C, Eggert C, Gradl D, Meister G, Giegerich M, Wedlich D, Laggerbauer B, Fischer U (2005). Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes Dev, 19(19): 2320–2330
|
112 |
Wishart T M, Huang J P, Murray L M, Lamont D J, Mutsaers C A, Ross J, Geldsetzer P, Ansorge O, Talbot K, Parson S H, Gillingwater T H (2010). SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy. Hum Mol Genet, 19(21): 4216–4228
|
113 |
Wollnik B (2010). A common mechanism for microcephaly. Nat Genet, 42(11): 923–924
|
114 |
Wu J Q, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M (2010). Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA, 107(11): 5254–5259
|
115 |
Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput Biol, 3(10): 1951–1967
|
116 |
Younis I, Dittmar K, Wang W, Foley S W, Berg M G, Hu K Y, Wei Z, Wan L, Dreyfuss G (2013). Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. eLife, 2: e00780
|
117 |
Zhang Z, Lotti F, Dittmar K, Younis I, Wan L, Kasim M, Dreyfuss G (2008). SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell, 133(4): 585–600
|
118 |
Zhang Z, Pinto A M, Wan L, Wang W, Berg M G, Oliva I, Singh L N, Dengler C, Wei Z, Dreyfuss G (2013). Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci USA, 110(48): 19348–19353
|
/
〈 |
|
〉 |