A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease

Stuart J. Grice, Ji-Long Liu

PDF(964 KB)
PDF(964 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (4) : 297-309. DOI: 10.1007/s11515-015-1368-9
REVIEW
REVIEW

A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease

Author information +
History +

Abstract

Genome-wide analyses of metazoan messenger RNA (mRNA) species are unveiling the extensive transcriptional diversity generated by alternative splicing (AS). Research is also beginning to identify the splicing factors and AS events required to maintain the balance between stem cell renewal (i.e stemness properties) and differentiation. One set of proteins at the center of spliceosome biogenesis are the survival motor neuron (SMN) complex constituents, which have a critical role in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) in all cells. In this review we discuss what is currently known about how AS controls pluripotency and cell fate and consider how an increased requirement for splicing factors, including SMN, helps to maintain an enrichment of stem cell-specific AS events. Furthermore, we highlight studies showing that mutations in specific splicing factors can lead to the aberrant development, and cause targeted degeneration of the nervous system. Using SMN as an example, we discuss the perspective of how stem cell-specific changes in splicing factors can lead to developmental defects and the selective degeneration of particular tissues. Finally we consider the expanding role of SMN, and other splicing factors, in the regulation of gene expression in stem cell biology, thereby providing insight into a number of debilitating diseases.

Keywords

stem cells / splicing / survival motor neuron (SMN) / spinal muscular atrophy (SMA)

Cite this article

Download citation ▾
Stuart J. Grice, Ji-Long Liu. A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease. Front. Biol., 2015, 10(4): 297‒309 https://doi.org/10.1007/s11515-015-1368-9

References

[1]
Barash Y, Calarco J A, Gao W, Pan Q, Wang X, Shai O, Blencowe B J, Frey B J (2010). Deciphering the splicing code. Nature, 465(7294): 53–59
CrossRef Pubmed Google scholar
[2]
Bäumer D, Lee S, Nicholson G, Davies J L, Parkinson N J, Murray L M, Gillingwater T H, Ansorge O, Davies K E, Talbot K (2009). Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet, 5(12): e1000773
CrossRef Pubmed Google scholar
[3]
Beggs J D (2005). Lsm proteins and RNA processing. Biochem Soc Trans, 33(Pt 3): 433–438
CrossRef Pubmed Google scholar
[4]
Borg R, Cauchi R J (2014). GEMINs: potential therapeutic targets for spinal muscular atrophy? Front Neurosci, 8: 325
CrossRef Pubmed Google scholar
[5]
Boulisfane N, Choleza M, Rage F, Neel H, Soret J, Bordonné R (2011). Impaired minor tri-snRNP assembly generates differential splicing defects of U12-type introns in lymphoblasts derived from a type I SMA patient. Hum Mol Genet, 20(4): 641–648
CrossRef Pubmed Google scholar
[6]
Bricceno K V, Martinez T, Leikina E, Duguez S, Partridge T A, Chernomordik L V, Fischbeck K H, Sumner C J, Burnett B G (2014). Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Hum Mol Genet, 23(18): 4745–4757
CrossRef Pubmed Google scholar
[7]
Burghes A H, Beattie C E (2009). Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci, 10(8): 597–609
CrossRef Pubmed Google scholar
[8]
Burlet P, Huber C, Bertrandy S, Ludosky M A, Zwaenepoel I, Clermont O, Roume J, Delezoide A L, Cartaud J, Munnich A, Lefebvre S (1998). The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet, 7(12): 1927–1933
CrossRef Pubmed Google scholar
[9]
Carvalho T, Almeida F, Calapez A, Lafarga M, Berciano M T, Carmo-Fonseca M (1999). The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body. J Cell Biol, 147(4): 715–728
CrossRef Pubmed Google scholar
[10]
Cauchi R J ( 2010). SMN and Gemins: ‘we are family’ ... or are we?: insights into the partnership between Gemins and the spinal muscular atrophy disease protein SMN. BioEssays, 32: 1077–1089
[11]
Cauchi R J, Sanchez-Pulido L, Liu J L (2010). Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies. Exp Cell Res, 316(14): 2354–2364
CrossRef Pubmed Google scholar
[12]
Chang W F, Xu J, Chang C C, Yang S H, Li H Y, Hsieh-Li H M, Tsai M H, Wu S C, Cheng W T, Liu J L, Sung L Y (2015). SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Brain Struct Funct, 220(3): 1539–1553
CrossRef Pubmed Google scholar
[13]
Chen C, Nott T J, Jin J, Pawson T (2011). Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol, 12(10): 629–642
CrossRef Pubmed Google scholar
[14]
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega V B, Wong E, Orlov Y L, Zhang W, Jiang J, Loh Y H, Yeo H C, Yeo Z X, Narang V, Govindarajan K R, Leong B, Shahab A, Ruan Y, Bourque G, Sung W K, Clarke N D, Wei C L, Ng H H (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6): 1106–1117
CrossRef Pubmed Google scholar
[15]
Coady T H, Lorson C L (2011). SMN in spinal muscular atrophy and snRNP biogenesis. Wiley Interdiscip Rev RNA, 2(4): 546–564
CrossRef Pubmed Google scholar
[16]
Cusin V, Clermont O, Gérard B, Chantereau D, Elion J (2003). Prevalence of SMN1 deletion and duplication in carrier and normal populations: implication for genetic counselling. J Med Genet, 40(4): e39
CrossRef Pubmed Google scholar
[17]
David C J, Manley J L (2010). Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev, 24(21): 2343–2364
CrossRef Pubmed Google scholar
[18]
Dixon J R, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget J E, Lee A Y, Ye Z, Kim A, Rajagopal N, Xie W, Diao Y, Liang J, Zhao H, Lobanenkov V V, Ecker J R, Thomson J A, Ren B (2015). Chromatin architecture reorganization during stem cell differentiation. Nature, 518(7539): 331–336
CrossRef Pubmed Google scholar
[19]
Edery P, Marcaillou C, Sahbatou M, Labalme A, Chastang J, Touraine R, Tubacher E, Senni F, Bober M B, Nampoothiri S, Jouk P S, Steichen E, Berland S, Toutain A, Wise C A, Sanlaville D, Rousseau F, Clerget-Darpoux F, Leutenegger A L (2011). Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Science, 332(6026): 240–243
CrossRef Pubmed Google scholar
[20]
Fallini C, Bassell G J, Rossoll W (2012). Spinal muscular atrophy: the role of SMN in axonal mRNA regulation. Brain Res, 1462: 81–92
CrossRef Pubmed Google scholar
[21]
Faustino N A, Cooper T A (2003). Pre-mRNA splicing and human disease. Genes Dev, 17(4): 419–437
CrossRef Pubmed Google scholar
[22]
Feng D, Xie J (2013). Aberrant splicing in neurological diseases. Wiley Interdiscip Rev RNA, 4(6): 631–649
Pubmed
[23]
Fischer U, Englbrecht C, Chari A (2011). Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdiscip Rev RNA, 2(5): 718–731
CrossRef Pubmed Google scholar
[24]
Fischer U, Liu Q, Dreyfuss G (1997). The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell, 90(6): 1023–1029
CrossRef Pubmed Google scholar
[25]
Forbes D J, Kirschner M W, Caput D, Dahlberg J E, Lund E (1984). Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos of Xenopus laevis. Cell, 38(3): 681–689
CrossRef Pubmed Google scholar
[26]
Gabanella F, Butchbach M E, Saieva L, Carissimi C, Burghes A H, Pellizzoni L (2007). Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs. PLoS ONE, 2(9): e921
CrossRef Pubmed Google scholar
[27]
Gabanella F, Carissimi C, Usiello A, Pellizzoni L (2005). The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum Mol Genet, 14(23): 3629–3642
CrossRef Pubmed Google scholar
[28]
Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H K, Alvarez M, Talukder S, Pan Q, Mazzoni E O, Nedelec S, Wichterle H, Woltjen K, Hughes T R, Zandstra P W, Nagy A, Wrana J L, Blencowe B J (2011). An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell, 147(1): 132–146
CrossRef Pubmed Google scholar
[29]
Gan Q, Chepelev I, Wei G, Tarayrah L, Cui K, Zhao K, Chen X (2010). Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res, 20(7): 763–783
CrossRef Pubmed Google scholar
[30]
Ghosh S, Marchand V, Gáspár I, Ephrussi A (2012). Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nat Struct Mol Biol, 19(4): 441–449
CrossRef Pubmed Google scholar
[31]
Gogliotti R G, Quinlan K A, Barlow C B, Heier C R, Heckman C J, Didonato C J (2012). Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci, 32(11): 3818–3829
CrossRef Pubmed Google scholar
[32]
Graubert T A, Shen D, Ding L, Okeyo-Owuor T, Lunn C L, Shao J, Krysiak K, Harris C C, Koboldt D C, Larson D E, McLellan M D, Dooling D J, Abbott R M, Fulton R S, Schmidt H, Kalicki-Veizer J, O’Laughlin M, Grillot M, Baty J, Heath S, Frater J L, Nasim T, Link D C, Tomasson M H, Westervelt P, DiPersio J F, Mardis E R, Ley T J, Wilson R K, Walter M J (2012). Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet, 44(1): 53–57
CrossRef Pubmed Google scholar
[33]
Graveley B R (2011). Splicing up pluripotency. Cell, 147(1): 22–24
CrossRef Pubmed Google scholar
[34]
Graveley B R, Hertel K J, Maniatis T (2001). The role of U2AF35 and U2AF65 in enhancer-dependent splicing. RNA, 7(6): 806–818
CrossRef Pubmed Google scholar
[35]
Grice S J, Liu J L (2011). Survival motor neuron protein regulates stem cell division, proliferation, and differentiation in Drosophila. PLoS Genet, 7(4): e1002030
CrossRef Pubmed Google scholar
[36]
Grice S J, Sleigh J N, Liu J L, Sattelle D B (2011). Invertebrate models of spinal muscular atrophy: insights into mechanisms and potential therapeutics. BioEssays, 33: 956–965
[37]
Grice S J, Sleigh J N, Motley W W, Liu J L, Burgess R W, Talbot K, Cader M Z (2015). Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet, 24(15): 4397–4406
CrossRef Pubmed Google scholar
[38]
Halfar K, Rommel C, Stocker H, Hafen E (2001). Ras controls growth, survival and differentiation in the Drosophila eye by different thresholds of MAP kinase activity. Development, 128(9): 1687–1696
Pubmed
[39]
Hamilton G, Gillingwater T H (2013). Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med, 19(1): 40–50
CrossRef Pubmed Google scholar
[40]
Han H, Irimia M, Ross P J, Sung H K, Alipanahi B, David L, Golipour A, Gabut M, Michael I P, Nachman E N, Wang E, Trcka D, Thompson T, O’Hanlon D, Slobodeniuc V, Barbosa-Morais N L, Burge C B, Moffat J, Frey B J, Nagy A, Ellis J, Wrana J L, Blencowe B J (2013). MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature, 498(7453): 241–245
CrossRef Pubmed Google scholar
[41]
Hayhurst M, Wagner A K, Cerletti M, Wagers A J, Rubin L L (2012). A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein. Dev Biol, 368(2): 323–334
CrossRef Pubmed Google scholar
[42]
He H, Liyanarachchi S, Akagi K, Nagy R, Li J, Dietrich R C, Li W, Sebastian N, Wen B, Xin B, Singh J, Yan P, Alder H, Haan E, Wieczorek D, Albrecht B, Puffenberger E, Wang H, Westman J A, Padgett R A, Symer D E, de la Chapelle A (2011). Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science, 332(6026): 238–240
CrossRef Pubmed Google scholar
[43]
Hinas A, Larsson P, Avesson L, Kirsebom L A, Virtanen A, Söderbom F (2006). Identification of the major spliceosomal RNAs in Dictyostelium discoideum reveals developmentally regulated U2 variants and polyadenylated snRNAs. Eukaryot Cell, 5(6): 924–934
CrossRef Pubmed Google scholar
[44]
Hua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett C F, Krainer A R (2011). Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature, 478(7367): 123–126
CrossRef Pubmed Google scholar
[45]
Huen M S, Sy S M, Leung K M, Ching Y P, Tipoe G L, Man C, Dong S, Chen J (2010). SON is a spliceosome-associated factor required for mitotic progression. Cell Cycle, 9(13): 2679–2685
CrossRef Pubmed Google scholar
[46]
Hunter G, Aghamaleky Sarvestany A, Roche S L, Symes R C, Gillingwater T H (2014). SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy. Hum Mol Genet, 23(9): 2235–2250
CrossRef Pubmed Google scholar
[47]
Huo Q, Kayikci M, Odermatt P, Meyer K, Michels O, Saxena S, Ule J, Schümperli D (2014). Splicing changes in SMA mouse motoneurons and SMN-depleted neuroblastoma cells: evidence for involvement of splicing regulatory proteins. RNA Biol, 11(11): 1430–1446
Pubmed
[48]
Jia Y, Mu J C, Ackerman S L (2012). Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell, 148(1–2): 296–308
CrossRef Pubmed Google scholar
[49]
Jodelka F M, Ebert A D, Duelli D M, Hastings M L (2010). A feedback loop regulates splicing of the spinal muscular atrophy-modifying gene, SMN2. Hum Mol Genet, 19(24): 4906–4917
CrossRef Pubmed Google scholar
[50]
Jones K W, Gorzynski K, Hales C M, Fischer U, Badbanchi F, Terns R M, Terns M P (2001). Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin. J Biol Chem, 276(42): 38645–38651
CrossRef Pubmed Google scholar
[51]
Jurica M S, Moore M J (2003). Pre-mRNA splicing: awash in a sea of proteins. Mol Cell, 12(1): 5–14
CrossRef Pubmed Google scholar
[52]
Kerins J A, Hanazawa M, Dorsett M, Schedl T (2010). PRP-17 and the pre-mRNA splicing pathway are preferentially required for the proliferation versus meiotic development decision and germline sex determination in Caenorhabditis elegans. Dev Dyn, 239: 1555–1572
[53]
Krastev D B, Slabicki M, Paszkowski-Rogacz M, Hubner N C, Junqueira M, Shevchenko A, Mann M, Neugebauer K M, Buchholz F (2011). A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol, 13(7): 809–818
CrossRef Pubmed Google scholar
[54]
Laggerbauer B, Liu S, Makarov E, Vornlocher H P, Makarova O, Ingelfinger D, Achsel T, Lührmann R (2005). The human U5 snRNP 52K protein (CD2BP2) interacts with U5-102K (hPrp6), a U4/U6.U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation. RNA, 11(5): 598–608
CrossRef Pubmed Google scholar
[55]
Lanner F, Rossant J (2010). The role of FGF/Erk signaling in pluripotent cells. Development, 137(20): 3351–3360
CrossRef Pubmed Google scholar
[56]
Le T T, McGovern V L, Alwine I E, Wang X, Massoni-Laporte A, Rich M M, Burghes A H (2011). Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet, 20(18): 3578–3591
CrossRef Pubmed Google scholar
[57]
Lee L, Davies S E, Liu J L (2009). The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway. Dev Biol, 332(1): 142–155
CrossRef Pubmed Google scholar
[58]
Lee S, Sayin A, Cauchi R J, Grice S, Burdett H, Baban D, van den Heuvel M (2008). Genome-wide expression analysis of a spinal muscular atrophy model: towards discovery of new drug targets. PLoS ONE, 3(1): e1404
CrossRef Pubmed Google scholar
[59]
Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995). Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 80(1): 155–165
CrossRef Pubmed Google scholar
[60]
Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997). Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet, 16(3): 265–269
CrossRef Pubmed Google scholar
[61]
Lefebvre S, Burlet P, Viollet L, Bertrandy S, Huber C, Belser C, Munnich A (2002). A novel association of the SMN protein with two major non-ribosomal nucleolar proteins and its implication in spinal muscular atrophy. Hum Mol Genet, 11(9): 1017–1027
CrossRef Pubmed Google scholar
[62]
Liu J L, Gall J G (2007). U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc Natl Acad Sci USA, 104(28): 11655–11659
CrossRef Pubmed Google scholar
[63]
Liu J L, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall J G (2006). The Drosophila melanogaster Cajal body. J Cell Biol, 172(6): 875–884
CrossRef Pubmed Google scholar
[64]
Liu J L, Wu Z, Nizami Z, Deryusheva S, Rajendra T K, Beumer K J, Gao H, Matera A G, Carroll D, Gall J G (2009). Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell, 20(6): 1661–1670
CrossRef Pubmed Google scholar
[65]
Liu Q, Dreyfuss G (1996). A novel nuclear structure containing the survival of motor neurons protein. EMBO J, 15(14): 3555–3565
Pubmed
[66]
Livyatan I, Meshorer E (2013). SON sheds light on RNA splicing and pluripotency. Nat Cell Biol, 15(10): 1139–1140
CrossRef Pubmed Google scholar
[67]
Loh Y H, Wu Q, Chew J L, Vega V B, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong K Y, Sung K W, Lee C W, Zhao X D, Chiu K P, Lipovich L, Kuznetsov V A, Robson P, Stanton L W, Wei C L, Ruan Y, Lim B, Ng H H (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 38(4): 431–440
CrossRef Pubmed Google scholar
[68]
Lorson C L, Androphy E J (2000). An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet, 9(2): 259–265
CrossRef Pubmed Google scholar
[69]
Lotti F, Imlach W L, Saieva L, Beck E S, Hao T, Li D K, Jiao W, Mentis G Z, Beattie C E, McCabe B D, Pellizzoni L (2012). An SMN-dependent U12 splicing event essential for motor circuit function. Cell, 151(2): 440–454
CrossRef Pubmed Google scholar
[70]
Lund E, Kahan B, Dahlberg J E (1985). Differential control of U1 small nuclear RNA expression during mouse development. Science, 229(4719): 1271–1274
CrossRef Pubmed Google scholar
[71]
Martínez-Hernández R, Bernal S, Also-Rallo E, Alías L, Barceló M J, Hereu M, Esquerda J E, Tizzano E F (2013). Synaptic defects in type I spinal muscular atrophy in human development. J Pathol, 229(1): 49–61
CrossRef Pubmed Google scholar
[72]
Maurer-Stroh S, Dickens N J, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting C P (2003). The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci, 28(2): 69–74
CrossRef Pubmed Google scholar
[73]
Mayshar Y, Rom E, Chumakov I, Kronman A, Yayon A, Benvenisty N (2008). Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells, 26(3): 767–774
CrossRef Pubmed Google scholar
[74]
McGivern J V, Patitucci T N, Nord J A, Barabas M E, Stucky C L, Ebert A D (2013). Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production. Glia, 61(9): 1418–1428
CrossRef Pubmed Google scholar
[75]
Monani U R, Coovert D D, Burghes A H (2000). Animal models of spinal muscular atrophy. Hum Mol Genet, 9(16): 2451–2457
CrossRef Pubmed Google scholar
[76]
Morency E, Sabra M, Catez F, Texier P, Lomonte P (2007). A novel cell response triggered by interphase centromere structural instability. J Cell Biol, 177(5): 757–768
CrossRef Pubmed Google scholar
[77]
Neumüller R A, Richter C, Fischer A, Novatchkova M, Neumüller K G, Knoblich J A (2011). Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell, 8(5): 580–593
CrossRef Pubmed Google scholar
[78]
Niwa H, Miyazaki J, Smith A G (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24(4): 372–376
CrossRef Pubmed Google scholar
[79]
O’Reilly D, Dienstbier M, Cowley S A, Vazquez P, Drozdz M, Taylor S, James W S, Murphy S (2013). Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res, 23(2): 281–291
CrossRef Pubmed Google scholar
[80]
Ohta S, Nishida E, Yamanaka S, Yamamoto T (2013). Global splicing pattern reversion during somatic cell reprogramming. Cell Reports, 5(2): 357–366
CrossRef Pubmed Google scholar
[81]
Ozsolak F, Milos P M (2011). RNA sequencing: advances, challenges and opportunities. Nat Rev Genet, 12(2): 87–98
CrossRef Pubmed Google scholar
[82]
Patel A A, Steitz J A (2003). Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol, 4(12): 960–970
CrossRef Pubmed Google scholar
[83]
Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998). A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell, 95(5): 615–624
CrossRef Pubmed Google scholar
[84]
Praveen K, Wen Y, Matera A G (2012). A Drosophila model of spinal muscular atrophy uncouples snRNP biogenesis functions of survival motor neuron from locomotion and viability defects. Cell Reports, 1(6): 624–631
CrossRef Pubmed Google scholar
[85]
Ruggiu M, McGovern V L, Lotti F, Saieva L, Li D K, Kariya S, Monani U R, Burghes A H, Pellizzoni L (2012). A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol, 32(1): 126–138
CrossRef Pubmed Google scholar
[86]
Sabra M, Texier P, El Maalouf J, Lomonte P (2013). The Tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated lysine 79 of histone H3. J Cell Sci, 126(Pt 16): 3664–3677
CrossRef Pubmed Google scholar
[87]
Salomonis N, Schlieve C R, Pereira L, Wahlquist C, Colas A, Zambon A C, Vranizan K, Spindler M J, Pico A R, Cline M S, Clark T A, Williams A, Blume J E, Samal E, Mercola M, Merrill B J, Conklin B R (2010). Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA, 107(23): 10514–10519
CrossRef Pubmed Google scholar
[88]
Salzler H R, Tatomer D C, Malek P Y, McDaniel S L, Orlando A N, Marzluff W F, Duronio R J (2013). A sequence in the Drosophila H3-H4 Promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs. Dev Cell, 24(6): 623–634
CrossRef Pubmed Google scholar
[89]
Scamborova P, Wong A, Steitz J A (2004). An intronic enhancer regulates splicing of the twintron of Drosophila melanogaster prospero pre-mRNA by two different spliceosomes. Mol Cell Biol, 24(5): 1855–1869
CrossRef Pubmed Google scholar
[90]
Shafey D, Côté P D, Kothary R (2005). Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology. Exp Cell Res, 311(1): 49–61
CrossRef Pubmed Google scholar
[91]
Shirai C L, Ley J N, White B S, Kim S, Tibbitts J, Shao J, Ndonwi M, Wadugu B, Duncavage E J, Okeyo-Owuor T, Liu T, Griffith M, McGrath S, Magrini V, Fulton R S, Fronick C, O’Laughlin M, Graubert T A, Walter M J (2015). Mutant U2AF1 Expression Alters Hematopoiesis and Pre-mRNA Splicing In Vivo. Cancer Cell, 27(5): 631–643
CrossRef Pubmed Google scholar
[92]
Sierra-Montes J M, Pereira-Simon S, Smail S S, Herrera R J (2005). The silk moth Bombyx mori U1 and U2 snRNA variants are differentially expressed. Gene, 352: 127–136
CrossRef Pubmed Google scholar
[93]
Sleigh J N, Barreiro-Iglesias A, Oliver P L, Biba A, Becker T, Davies K E, Becker C G, Talbot K (2014a). Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet, 23(4): 855–869
CrossRef Pubmed Google scholar
[94]
Sleigh J N, Gillingwater T H, Talbot K (2011). The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis Model Mech, 4(4): 457–467
CrossRef Pubmed Google scholar
[95]
Sleigh J N, Grice S J, Burgess R W, Talbot K, Cader M Z (2014b). Neuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot-Marie-Tooth type 2D mice. Hum Mol Genet, 23(10): 2639–2650
CrossRef Pubmed Google scholar
[96]
Sleigh J N, Grice S J, Davies K E, Talbot K (2013). Spinal muscular atrophy at the crossroads of basic science and therapy. Neuromuscul Disord, 23(1): 96
CrossRef Pubmed Google scholar
[97]
Sousa-Nunes R, Cheng L Y, Gould A P (2010). Regulating neural proliferation in the Drosophila CNS. Curr Opin Neurobiol, 20(1): 50–57
CrossRef Pubmed Google scholar
[98]
Sterne-Weiler T, Sanford J R (2014). Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol, 15(1): 201
CrossRef Pubmed Google scholar
[99]
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872
CrossRef Pubmed Google scholar
[100]
Thornton G K, Woods C G (2009). Primary microcephaly: do all roads lead to Rome? Trends Genet, 25(11): 501–510
CrossRef Pubmed Google scholar
[101]
Tisdale S, Lotti F, Saieva L, Van Meerbeke J P, Crawford T O, Sumner C J, Mentis G Z, Pellizzoni L (2013). SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3′-end formation of histone mRNAs. Cell Reports, 5(5): 1187–1195
CrossRef Pubmed Google scholar
[102]
Turunen J J, Niemelä E H, Verma B, Frilander M J (2013). The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA, 4(1): 61–76
CrossRef Pubmed Google scholar
[103]
Valadkhan S, Jaladat Y (2010). The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics, 10(22): 4128–4141
CrossRef Pubmed Google scholar
[104]
Venables J P, Lapasset L, Gadea G, Fort P, Klinck R, Irimia M, Vignal E, Thibault P, Prinos P, Chabot B, Abou Elela S, Roux P, Lemaitre J M, Tazi J (2013). MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nat Commun, 4: 2480
CrossRef Pubmed Google scholar
[105]
Verheggen C, Mouaikel J, Thiry M, Blanchard J M, Tollervey D, Bordonné R, Lafontaine D L, Bertrand E (2001). Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J, 20(19): 5480–5490
CrossRef Pubmed Google scholar
[106]
Wahl M C, Will C L, Lührmann R (2009). The spliceosome: design principles of a dynamic RNP machine. Cell, 136(4): 701–718
CrossRef Pubmed Google scholar
[107]
Wan L, Battle D J, Yong J, Gubitz A K, Kolb S J, Wang J, Dreyfuss G (2005). The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol Cell Biol, 25(13): 5543–5551
CrossRef Pubmed Google scholar
[108]
Wang C, Wilson-Berry L, Schedl T, Hansen D(2012). TEG-1 CD2BP2 regulates stem cell proliferation and sex determination in the C. elegans germ line and physically interacts with the UAF-1 U2AF65 splicing factor. Deve Dyn, 241: 505–521
[109]
Wang E T, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456(7221): 470–476
CrossRef Pubmed Google scholar
[110]
Will C L, Schneider C, Reed R, Lührmann R (1999). Identification of both shared and distinct proteins in the major and minor spliceosomes. Science, 284(5422): 2003–2005
CrossRef Pubmed Google scholar
[111]
Winkler C, Eggert C, Gradl D, Meister G, Giegerich M, Wedlich D, Laggerbauer B, Fischer U (2005). Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes Dev, 19(19): 2320–2330
CrossRef Pubmed Google scholar
[112]
Wishart T M, Huang J P, Murray L M, Lamont D J, Mutsaers C A, Ross J, Geldsetzer P, Ansorge O, Talbot K, Parson S H, Gillingwater T H (2010). SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy. Hum Mol Genet, 19(21): 4216–4228
CrossRef Pubmed Google scholar
[113]
Wollnik B (2010). A common mechanism for microcephaly. Nat Genet, 42(11): 923–924
CrossRef Pubmed Google scholar
[114]
Wu J Q, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M (2010). Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA, 107(11): 5254–5259
CrossRef Pubmed Google scholar
[115]
Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput Biol, 3(10): 1951–1967
CrossRef Pubmed Google scholar
[116]
Younis I, Dittmar K, Wang W, Foley S W, Berg M G, Hu K Y, Wei Z, Wan L, Dreyfuss G (2013). Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. eLife, 2: e00780
CrossRef Pubmed Google scholar
[117]
Zhang Z, Lotti F, Dittmar K, Younis I, Wan L, Kasim M, Dreyfuss G (2008). SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell, 133(4): 585–600
CrossRef Pubmed Google scholar
[118]
Zhang Z, Pinto A M, Wan L, Wang W, Berg M G, Oliva I, Singh L N, Dengler C, Wei Z, Dreyfuss G (2013). Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci USA, 110(48): 19348–19353
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Stuart J Grice and Ji-long Liu declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(964 KB)

Accesses

Citations

Detail

Sections
Recommended

/