Advances in Drosophila gene targeting and related techniques
Received date: 09 Apr 2010
Accepted date: 21 Apr 2010
Published date: 01 Jun 2010
Copyright
Functional biological research has benefited tremendously by analyses of the phenotypes of mutant organisms which can be generated through targeted mutation of genes. In Drosophila, compared with random mutagenesis methods gene targeting has gained its popularity because it can introduce any desired mutation into a gene of interest. However, applications of gene targeting have been limited because the targeting efficiency varies with different genes, and the time and labor of targeting procedure are intensive. Nevertheless, improvement of gene targeting and development of its variant technologies have received much attention of scientists. Here we review recent progress that has been made in expanding the applications of gene targeting, which include the ФC31 integration system and zinc-finger nucleases induced gene targeting, and new strategies that generate more efficient and reliable gene targeting.
Zhongsheng YU , Renjie JIAO . Advances in Drosophila gene targeting and related techniques[J]. Frontiers in Biology, 2010 , 5(3) : 238 -245 . DOI: 10.1007/s11515-010-0051-4
1 |
Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F, George R A, Lewis S E, Richards S, Ashburner M, Henderson S N, Sutton G G, Wortman J R, Yandell M D, Zhang Q, Chen L X, Brandon R C, Rogers Y H, Blazej R G, Champe M, Pfeiffer B D, Wan K H, Doyle C, Baxter E G, Helt G, Nelson C R, Gabor G L, Abril J F, Agbayani A, An H J, Andrews-Pfannkoch C, Baldwin D, Ballew R M, Basu A, Baxendale J, Bayraktaroglu L, Beasley E M, Beeson K Y, Benos P V, Berman B P, Bhandari D, Bolshakov S, Borkova D, Botchan M R, Bouck J, Brokstein P, Brottier P, Burtis K C, Busam D A, Butler H, Cadieu E, Center A, Chandra I, Cherry J M, Cawley S, Dahlke C, Davenport L B, Davies P, de Pablos B, Delcher A, Deng Z, Mays A D, Dew I, Dietz S M, Dodson K, Doup L E, Downes M, Dugan-Rocha S, Dunkov B C, Dunn P, Durbin K J, Evangelista C C, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian A E, Garg N S, Gelbart W M, Glasser K, Glodek A, Gong F, Gorrell J H, Gu Z, Guan P, Harris M, Harris N L, Harvey D, Heiman T J, Hernandez J R, Houck J, Hostin D, Houston K A, Howland T J, Wei M H, Ibegwam C, Jalali M, Kalush F, Karpen G H, Ke Z, Kennison J A, Ketchum K A, Kimmel B E, Kodira C D, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky A A, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh T C, McLeod M P, McPherson D, Merkulov G, Milshina N V, Mobarry C, Morris J, Moshrefi A, Mount S M, Moy M, Murphy B, Murphy L, Muzny D M, Nelson D L, Nelson D R, Nelson K A, Nixon K, Nusskern D R, Pacleb J M, Palazzolo M, Pittman G S, Pan S, Pollard J, Puri V, Reese M G, Reinert K, Remington K, Saunders R D, Scheeler F, Shen H, Shue B C, Sidén-Kiamos I, Simpson M, Skupski M P, Smith T, Spier E, Spradling A C, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang A H, Wang X, Wang Z Y, Wassarman D A, Weinstock G M, Weissenbach J, Williams S M, Woodage T, Worley K C, Wu D, Yang S, Yao Q A, Ye J, Yeh R F, Zaveri J S, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng X H, Zhong F N, Zhong W, Zhou X, Zhu S, Zhu X, Smith H O, Gibbs R A, Myers E W, Rubin G M, Venter J C (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461): 2185-2195
|
2 |
Belteki G, Gertsenstein M, Ow D W, Nagy A (2003). Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol, 21(3): 321-324
|
3 |
Beumer K, Bhattacharyya G, Bibikova M, Trautman J K, Carroll D (2006). Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics, 172(4): 2391-2403
|
4 |
Bibikova M, Beumer K, Trautman J K, Carroll D (2003). Enhancing gene targeting with designed zinc finger nucleases. Science, 300(5620): 764
|
5 |
Bibikova M, Golic M, Golic K G, Carroll D (2002). Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 161(3): 1169-1175
|
6 |
Bischof J, Maeda R K, Hediger M, Karch F, Basler K (2007). An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A, 104(9): 3312-3317
|
7 |
Brand A H, Perrimon N (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2): 401-415
|
8 |
Capecchi M R (1989). Altering the genome by homologous recombination. Science, 244(4910): 1288-1292
|
9 |
Gao G, McMahon C, Chen J, Rong Y S (2008). A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila. Proc Natl Acad Sci U S A, 105(37): 13999-14004
|
10 |
Golic K G, Golic M M (1996). Engineering the Drosophila genome: chromosome rearrangements by design. Genetics, 144(4): 1693-1711
|
11 |
Gong W J, Golic K G (2003). Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci U S A, 100(5): 2556-2561
|
12 |
Greenberg A J, Moran J R, Coyne J A, Wu C I (2003). Ecological adaptation during incipient speciation revealed by precise gene replacement. Science, 302(5651): 1754-1757
|
13 |
Greenspan R J. Fly pushing: the theory and practice of Drosophila genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004
|
14 |
Grether M E, Abrams J M, Agapite J, White K, Steller H (1995). The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev, 9(14): 1694-1708
|
15 |
Groth A C, Fish M, Nusse R, Calos M P (2004). Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics, 166(4): 1775-1782
|
16 |
Hanson K D, Sedivy J M (1995). Analysis of biological selections for high-efficiency gene targeting. Mol Cell Biol, 15(1): 45-51
|
17 |
Huang J, Zhou W, Dong W, Watson A M, Hong Y (2009). From the Cover: Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc Natl Acad Sci U S A, 106(20): 8284-8289
|
18 |
Huang J, Zhou W, Watson A M, Jan Y N, Hong Y (2008). Efficient ends-out gene targeting in Drosophila. Genetics, 180(1): 703-707
|
19 |
Lankenau S, Barnickel T, Marhold J, Lyko F, Mechler B M, Lankenau D H (2003). Knockout targeting of the Drosophila nap1 gene and examination of DNA repair tracts in the recombination products. Genetics, 163(2): 611-623
|
20 |
Liu Q, Xia Z, Zhong X, Case C C (2002). Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem, 277(6): 3850-3856
|
21 |
McCreath K J, Howcroft J, Campbell K H, Colman A, Schnieke A E, Kind A J (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 405(6790): 1066-1069
|
22 |
O’Keefe L V, Smibert P, Colella A, Chataway T K, Saint R, Richards R I (2007). Know thy fly. Trends Genet, 23(5): 238-242
|
23 |
Radford S J, Goley E, Baxter K, McMahan S, Sekelsky J (2005). Drosophila ERCC1 is required for a subset of MEI-9-dependent meiotic crossovers. Genetics, 170(4): 1737-1745
|
24 |
Rong Y S, Golic K G (2000). Gene targeting by homologous recombination in Drosophila. Science, 288(5473): 2013-2018
|
25 |
Rong Y S, Golic K G (2001). A targeted gene knockout in Drosophila. Genetics, 157(3): 1307-1312
|
26 |
Rong Y S, Titen S W, Xie H B, Golic M M, Bastiani M, Bandyopadhyay P, Olivera B M, Brodsky M, Rubin G M, Golic K G (2002). Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev, 16(12): 1568-1581
|
27 |
Rubin G M, Spradling A C (1982). Genetic transformation of Drosophila with transposable element vectors. Science, 218(4570): 348-353
|
28 |
Schaefer D G, Zrÿd J P (1997). Efficient gene targeting in the moss Physcomitrella patens. Plant J, 11(6): 1195-1206
|
29 |
Segal D J (2002). The use of zinc finger peptides to study the role of specific factor binding sites in the chromatin environment. Methods, 26(1): 76-83
|
30 |
Thibault S T, Singer M A, Miyazaki W Y, Milash B, Dompe N A, Singh C M, Buchholz R, Demsky M, Fawcett R, Francis-Lang H L, Ryner L, Cheung L M, Chong A, Erickson C, Fisher W W, Greer K, Hartouni S R, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith R D, Stevens L M, Stuber C, Tan L R, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg M L, Margolis J (2004). A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet, 36(3): 283-287
|
31 |
Thorpe H M, Smith M C (1998). In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A, 95(10): 5505-5510
|
32 |
Thyagarajan B, Olivares E C, Hollis R P, Ginsburg D S, Calos M P (2001). Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol, 21(12): 3926-3934
|
33 |
Venken K J, He Y, Hoskins R A, Bellen H J (2006). P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science, 314(5806): 1747-1751
|
34 |
White K, Tahaoglu E, Steller H (1996). Cell killing by the Drosophila gene reaper. Science, 271(5250): 805-807
|
35 |
Xu T, Rubin G M (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development, 117(4): 1223-1237
|
/
〈 | 〉 |