REVIEW

Advances in Drosophila gene targeting and related techniques

  • Zhongsheng YU 1,2 ,
  • Renjie JIAO , 1
Expand
  • 1. State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 2. Graduate School of Chinese Academy of Sciences, Beijing 100080, China

Received date: 09 Apr 2010

Accepted date: 21 Apr 2010

Published date: 01 Jun 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Functional biological research has benefited tremendously by analyses of the phenotypes of mutant organisms which can be generated through targeted mutation of genes. In Drosophila, compared with random mutagenesis methods gene targeting has gained its popularity because it can introduce any desired mutation into a gene of interest. However, applications of gene targeting have been limited because the targeting efficiency varies with different genes, and the time and labor of targeting procedure are intensive. Nevertheless, improvement of gene targeting and development of its variant technologies have received much attention of scientists. Here we review recent progress that has been made in expanding the applications of gene targeting, which include the ФC31 integration system and zinc-finger nucleases induced gene targeting, and new strategies that generate more efficient and reliable gene targeting.

Cite this article

Zhongsheng YU , Renjie JIAO . Advances in Drosophila gene targeting and related techniques[J]. Frontiers in Biology, 2010 , 5(3) : 238 -245 . DOI: 10.1007/s11515-010-0051-4

1
Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F, George R A, Lewis S E, Richards S, Ashburner M, Henderson S N, Sutton G G, Wortman J R, Yandell M D, Zhang Q, Chen L X, Brandon R C, Rogers Y H, Blazej R G, Champe M, Pfeiffer B D, Wan K H, Doyle C, Baxter E G, Helt G, Nelson C R, Gabor G L, Abril J F, Agbayani A, An H J, Andrews-Pfannkoch C, Baldwin D, Ballew R M, Basu A, Baxendale J, Bayraktaroglu L, Beasley E M, Beeson K Y, Benos P V, Berman B P, Bhandari D, Bolshakov S, Borkova D, Botchan M R, Bouck J, Brokstein P, Brottier P, Burtis K C, Busam D A, Butler H, Cadieu E, Center A, Chandra I, Cherry J M, Cawley S, Dahlke C, Davenport L B, Davies P, de Pablos B, Delcher A, Deng Z, Mays A D, Dew I, Dietz S M, Dodson K, Doup L E, Downes M, Dugan-Rocha S, Dunkov B C, Dunn P, Durbin K J, Evangelista C C, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian A E, Garg N S, Gelbart W M, Glasser K, Glodek A, Gong F, Gorrell J H, Gu Z, Guan P, Harris M, Harris N L, Harvey D, Heiman T J, Hernandez J R, Houck J, Hostin D, Houston K A, Howland T J, Wei M H, Ibegwam C, Jalali M, Kalush F, Karpen G H, Ke Z, Kennison J A, Ketchum K A, Kimmel B E, Kodira C D, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky A A, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh T C, McLeod M P, McPherson D, Merkulov G, Milshina N V, Mobarry C, Morris J, Moshrefi A, Mount S M, Moy M, Murphy B, Murphy L, Muzny D M, Nelson D L, Nelson D R, Nelson K A, Nixon K, Nusskern D R, Pacleb J M, Palazzolo M, Pittman G S, Pan S, Pollard J, Puri V, Reese M G, Reinert K, Remington K, Saunders R D, Scheeler F, Shen H, Shue B C, Sidén-Kiamos I, Simpson M, Skupski M P, Smith T, Spier E, Spradling A C, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang A H, Wang X, Wang Z Y, Wassarman D A, Weinstock G M, Weissenbach J, Williams S M, Woodage T, Worley K C, Wu D, Yang S, Yao Q A, Ye J, Yeh R F, Zaveri J S, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng X H, Zhong F N, Zhong W, Zhou X, Zhu S, Zhu X, Smith H O, Gibbs R A, Myers E W, Rubin G M, Venter J C (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461): 2185-2195

DOI

2
Belteki G, Gertsenstein M, Ow D W, Nagy A (2003). Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol, 21(3): 321-324

DOI

3
Beumer K, Bhattacharyya G, Bibikova M, Trautman J K, Carroll D (2006). Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics, 172(4): 2391-2403

DOI

4
Bibikova M, Beumer K, Trautman J K, Carroll D (2003). Enhancing gene targeting with designed zinc finger nucleases. Science, 300(5620): 764

DOI

5
Bibikova M, Golic M, Golic K G, Carroll D (2002). Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 161(3): 1169-1175

6
Bischof J, Maeda R K, Hediger M, Karch F, Basler K (2007). An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A, 104(9): 3312-3317

DOI

7
Brand A H, Perrimon N (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2): 401-415

8
Capecchi M R (1989). Altering the genome by homologous recombination. Science, 244(4910): 1288-1292

DOI

9
Gao G, McMahon C, Chen J, Rong Y S (2008). A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila. Proc Natl Acad Sci U S A, 105(37): 13999-14004

DOI

10
Golic K G, Golic M M (1996). Engineering the Drosophila genome: chromosome rearrangements by design. Genetics, 144(4): 1693-1711

11
Gong W J, Golic K G (2003). Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci U S A, 100(5): 2556-2561

DOI

12
Greenberg A J, Moran J R, Coyne J A, Wu C I (2003). Ecological adaptation during incipient speciation revealed by precise gene replacement. Science, 302(5651): 1754-1757

DOI

13
Greenspan R J. Fly pushing: the theory and practice of Drosophila genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004

14
Grether M E, Abrams J M, Agapite J, White K, Steller H (1995). The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev, 9(14): 1694-1708

DOI

15
Groth A C, Fish M, Nusse R, Calos M P (2004). Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics, 166(4): 1775-1782

DOI

16
Hanson K D, Sedivy J M (1995). Analysis of biological selections for high-efficiency gene targeting. Mol Cell Biol, 15(1): 45-51

17
Huang J, Zhou W, Dong W, Watson A M, Hong Y (2009). From the Cover: Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc Natl Acad Sci U S A, 106(20): 8284-8289

DOI

18
Huang J, Zhou W, Watson A M, Jan Y N, Hong Y (2008). Efficient ends-out gene targeting in Drosophila. Genetics, 180(1): 703-707

DOI

19
Lankenau S, Barnickel T, Marhold J, Lyko F, Mechler B M, Lankenau D H (2003). Knockout targeting of the Drosophila nap1 gene and examination of DNA repair tracts in the recombination products. Genetics, 163(2): 611-623

20
Liu Q, Xia Z, Zhong X, Case C C (2002). Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem, 277(6): 3850-3856

DOI

21
McCreath K J, Howcroft J, Campbell K H, Colman A, Schnieke A E, Kind A J (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 405(6790): 1066-1069

DOI

22
O’Keefe L V, Smibert P, Colella A, Chataway T K, Saint R, Richards R I (2007). Know thy fly. Trends Genet, 23(5): 238-242

DOI

23
Radford S J, Goley E, Baxter K, McMahan S, Sekelsky J (2005). Drosophila ERCC1 is required for a subset of MEI-9-dependent meiotic crossovers. Genetics, 170(4): 1737-1745

DOI

24
Rong Y S, Golic K G (2000). Gene targeting by homologous recombination in Drosophila. Science, 288(5473): 2013-2018

DOI

25
Rong Y S, Golic K G (2001). A targeted gene knockout in Drosophila. Genetics, 157(3): 1307-1312

26
Rong Y S, Titen S W, Xie H B, Golic M M, Bastiani M, Bandyopadhyay P, Olivera B M, Brodsky M, Rubin G M, Golic K G (2002). Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev, 16(12): 1568-1581

DOI

27
Rubin G M, Spradling A C (1982). Genetic transformation of Drosophila with transposable element vectors. Science, 218(4570): 348-353

DOI

28
Schaefer D G, Zrÿd J P (1997). Efficient gene targeting in the moss Physcomitrella patens. Plant J, 11(6): 1195-1206

DOI

29
Segal D J (2002). The use of zinc finger peptides to study the role of specific factor binding sites in the chromatin environment. Methods, 26(1): 76-83

DOI

30
Thibault S T, Singer M A, Miyazaki W Y, Milash B, Dompe N A, Singh C M, Buchholz R, Demsky M, Fawcett R, Francis-Lang H L, Ryner L, Cheung L M, Chong A, Erickson C, Fisher W W, Greer K, Hartouni S R, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith R D, Stevens L M, Stuber C, Tan L R, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg M L, Margolis J (2004). A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet, 36(3): 283-287

DOI

31
Thorpe H M, Smith M C (1998). In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A, 95(10): 5505-5510

DOI

32
Thyagarajan B, Olivares E C, Hollis R P, Ginsburg D S, Calos M P (2001). Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol, 21(12): 3926-3934

DOI

33
Venken K J, He Y, Hoskins R A, Bellen H J (2006). P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science, 314(5806): 1747-1751

DOI

34
White K, Tahaoglu E, Steller H (1996). Cell killing by the Drosophila gene reaper. Science, 271(5250): 805-807

DOI

35
Xu T, Rubin G M (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development, 117(4): 1223-1237

Outlines

/