Advances in
Zhongsheng YU, Renjie JIAO
Advances in
Functional biological research has benefited tremendously by analyses of the phenotypes of mutant organisms which can be generated through targeted mutation of genes. In Drosophila, compared with random mutagenesis methods gene targeting has gained its popularity because it can introduce any desired mutation into a gene of interest. However, applications of gene targeting have been limited because the targeting efficiency varies with different genes, and the time and labor of targeting procedure are intensive. Nevertheless, improvement of gene targeting and development of its variant technologies have received much attention of scientists. Here we review recent progress that has been made in expanding the applications of gene targeting, which include the ФC31 integration system and zinc-finger nucleases induced gene targeting, and new strategies that generate more efficient and reliable gene targeting.
gene targeting / ends-in / ends-out / ФC31 integration system / zinc-finger nucleases (ZFNs) / homologous recombination (HR) / Drosophila melanogaster
[1] |
Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F, George R A, Lewis S E, Richards S, Ashburner M, Henderson S N, Sutton G G, Wortman J R, Yandell M D, Zhang Q, Chen L X, Brandon R C, Rogers Y H, Blazej R G, Champe M, Pfeiffer B D, Wan K H, Doyle C, Baxter E G, Helt G, Nelson C R, Gabor G L, Abril J F, Agbayani A, An H J, Andrews-Pfannkoch C, Baldwin D, Ballew R M, Basu A, Baxendale J, Bayraktaroglu L, Beasley E M, Beeson K Y, Benos P V, Berman B P, Bhandari D, Bolshakov S, Borkova D, Botchan M R, Bouck J, Brokstein P, Brottier P, Burtis K C, Busam D A, Butler H, Cadieu E, Center A, Chandra I, Cherry J M, Cawley S, Dahlke C, Davenport L B, Davies P, de Pablos B, Delcher A, Deng Z, Mays A D, Dew I, Dietz S M, Dodson K, Doup L E, Downes M, Dugan-Rocha S, Dunkov B C, Dunn P, Durbin K J, Evangelista C C, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian A E, Garg N S, Gelbart W M, Glasser K, Glodek A, Gong F, Gorrell J H, Gu Z, Guan P, Harris M, Harris N L, Harvey D, Heiman T J, Hernandez J R, Houck J, Hostin D, Houston K A, Howland T J, Wei M H, Ibegwam C, Jalali M, Kalush F, Karpen G H, Ke Z, Kennison J A, Ketchum K A, Kimmel B E, Kodira C D, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky A A, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh T C, McLeod M P, McPherson D, Merkulov G, Milshina N V, Mobarry C, Morris J, Moshrefi A, Mount S M, Moy M, Murphy B, Murphy L, Muzny D M, Nelson D L, Nelson D R, Nelson K A, Nixon K, Nusskern D R, Pacleb J M, Palazzolo M, Pittman G S, Pan S, Pollard J, Puri V, Reese M G, Reinert K, Remington K, Saunders R D, Scheeler F, Shen H, Shue B C, Sidén-Kiamos I, Simpson M, Skupski M P, Smith T, Spier E, Spradling A C, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang A H, Wang X, Wang Z Y, Wassarman D A, Weinstock G M, Weissenbach J, Williams S M, Woodage T, Worley K C, Wu D, Yang S, Yao Q A, Ye J, Yeh R F, Zaveri J S, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng X H, Zhong F N, Zhong W, Zhou X, Zhu S, Zhu X, Smith H O, Gibbs R A, Myers E W, Rubin G M, Venter J C (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461): 2185-2195
CrossRef
Google scholar
|
[2] |
Belteki G, Gertsenstein M, Ow D W, Nagy A (2003). Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol, 21(3): 321-324
CrossRef
Google scholar
|
[3] |
Beumer K, Bhattacharyya G, Bibikova M, Trautman J K, Carroll D (2006). Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics, 172(4): 2391-2403
CrossRef
Google scholar
|
[4] |
Bibikova M, Beumer K, Trautman J K, Carroll D (2003). Enhancing gene targeting with designed zinc finger nucleases. Science, 300(5620): 764
CrossRef
Google scholar
|
[5] |
Bibikova M, Golic M, Golic K G, Carroll D (2002). Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 161(3): 1169-1175
|
[6] |
Bischof J, Maeda R K, Hediger M, Karch F, Basler K (2007). An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A, 104(9): 3312-3317
CrossRef
Google scholar
|
[7] |
Brand A H, Perrimon N (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2): 401-415
|
[8] |
Capecchi M R (1989). Altering the genome by homologous recombination. Science, 244(4910): 1288-1292
CrossRef
Google scholar
|
[9] |
Gao G, McMahon C, Chen J, Rong Y S (2008). A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila. Proc Natl Acad Sci U S A, 105(37): 13999-14004
CrossRef
Google scholar
|
[10] |
Golic K G, Golic M M (1996). Engineering the Drosophila genome: chromosome rearrangements by design. Genetics, 144(4): 1693-1711
|
[11] |
Gong W J, Golic K G (2003). Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci U S A, 100(5): 2556-2561
CrossRef
Google scholar
|
[12] |
Greenberg A J, Moran J R, Coyne J A, Wu C I (2003). Ecological adaptation during incipient speciation revealed by precise gene replacement. Science, 302(5651): 1754-1757
CrossRef
Google scholar
|
[13] |
Greenspan R J. Fly pushing: the theory and practice of Drosophila genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004
|
[14] |
Grether M E, Abrams J M, Agapite J, White K, Steller H (1995). The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev, 9(14): 1694-1708
CrossRef
Google scholar
|
[15] |
Groth A C, Fish M, Nusse R, Calos M P (2004). Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics, 166(4): 1775-1782
CrossRef
Google scholar
|
[16] |
Hanson K D, Sedivy J M (1995). Analysis of biological selections for high-efficiency gene targeting. Mol Cell Biol, 15(1): 45-51
|
[17] |
Huang J, Zhou W, Dong W, Watson A M, Hong Y (2009). From the Cover: Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc Natl Acad Sci U S A, 106(20): 8284-8289
CrossRef
Google scholar
|
[18] |
Huang J, Zhou W, Watson A M, Jan Y N, Hong Y (2008). Efficient ends-out gene targeting in Drosophila. Genetics, 180(1): 703-707
CrossRef
Google scholar
|
[19] |
Lankenau S, Barnickel T, Marhold J, Lyko F, Mechler B M, Lankenau D H (2003). Knockout targeting of the Drosophila nap1 gene and examination of DNA repair tracts in the recombination products. Genetics, 163(2): 611-623
|
[20] |
Liu Q, Xia Z, Zhong X, Case C C (2002). Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem, 277(6): 3850-3856
CrossRef
Google scholar
|
[21] |
McCreath K J, Howcroft J, Campbell K H, Colman A, Schnieke A E, Kind A J (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 405(6790): 1066-1069
CrossRef
Google scholar
|
[22] |
O’Keefe L V, Smibert P, Colella A, Chataway T K, Saint R, Richards R I (2007). Know thy fly. Trends Genet, 23(5): 238-242
CrossRef
Google scholar
|
[23] |
Radford S J, Goley E, Baxter K, McMahan S, Sekelsky J (2005). Drosophila ERCC1 is required for a subset of MEI-9-dependent meiotic crossovers. Genetics, 170(4): 1737-1745
CrossRef
Google scholar
|
[24] |
Rong Y S, Golic K G (2000). Gene targeting by homologous recombination in Drosophila. Science, 288(5473): 2013-2018
CrossRef
Google scholar
|
[25] |
Rong Y S, Golic K G (2001). A targeted gene knockout in Drosophila. Genetics, 157(3): 1307-1312
|
[26] |
Rong Y S, Titen S W, Xie H B, Golic M M, Bastiani M, Bandyopadhyay P, Olivera B M, Brodsky M, Rubin G M, Golic K G (2002). Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev, 16(12): 1568-1581
CrossRef
Google scholar
|
[27] |
Rubin G M, Spradling A C (1982). Genetic transformation of Drosophila with transposable element vectors. Science, 218(4570): 348-353
CrossRef
Google scholar
|
[28] |
Schaefer D G, Zrÿd J P (1997). Efficient gene targeting in the moss Physcomitrella patens. Plant J, 11(6): 1195-1206
CrossRef
Google scholar
|
[29] |
Segal D J (2002). The use of zinc finger peptides to study the role of specific factor binding sites in the chromatin environment. Methods, 26(1): 76-83
CrossRef
Google scholar
|
[30] |
Thibault S T, Singer M A, Miyazaki W Y, Milash B, Dompe N A, Singh C M, Buchholz R, Demsky M, Fawcett R, Francis-Lang H L, Ryner L, Cheung L M, Chong A, Erickson C, Fisher W W, Greer K, Hartouni S R, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith R D, Stevens L M, Stuber C, Tan L R, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg M L, Margolis J (2004). A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet, 36(3): 283-287
CrossRef
Google scholar
|
[31] |
Thorpe H M, Smith M C (1998). In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A, 95(10): 5505-5510
CrossRef
Google scholar
|
[32] |
Thyagarajan B, Olivares E C, Hollis R P, Ginsburg D S, Calos M P (2001). Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol, 21(12): 3926-3934
CrossRef
Google scholar
|
[33] |
Venken K J, He Y, Hoskins R A, Bellen H J (2006). P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science, 314(5806): 1747-1751
CrossRef
Google scholar
|
[34] |
White K, Tahaoglu E, Steller H (1996). Cell killing by the Drosophila gene reaper. Science, 271(5250): 805-807
CrossRef
Google scholar
|
[35] |
Xu T, Rubin G M (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development, 117(4): 1223-1237
|
/
〈 | 〉 |