Received date: 10 Feb 2010
Accepted date: 18 Mar 2010
Published date: 01 Jun 2010
Copyright
Precise spatio-temporal control of gene expression at transcriptional and translational levels is required for both of proper developmental programming of the central nervous system and the performing of normal brain functions. Many studies have demonstrated that microRNAs (miRNAs), a class of endogenous small RNAs, participate in post-transcriptional regulation of gene expression, and thus execute regulatory functions in various biologic processes. Emerging evidence indicates that miRNAs participate in gene regulatory networks during the developmental, physiologic, and pathological processes of the brain. In this review, we attempt to summarize some of the recent advances in research on the involvement of miRNAs in the regulation of neuronal development, neuroplasticity, and brain diseases, revealing their indispensable roles in neural functions.
Key words: MicroRNAs; brain; central nervous system; development; neurological diseases
Qiumin LE , Zhaoyang HU , Lan MA . MicroRNAs in the neural system[J]. Frontiers in Biology, 2010 , 5(3) : 219 -226 . DOI: 10.1007/s11515-010-0038-1
1 |
Ashraf S I, McLoon A L, Sclarsic S M, Kunes S (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell, 124(1): 191-205
|
2 |
Barbato C, Arisi I, Frizzo M E, Brandi R, Da Sacco L, Masotti A (2009). Computational challenges in miRNA target predictions: to be or not to be a true target? J Biomed Biotechnol, 2009: 803069
|
3 |
Bell G W, Lewitter F (2009). Resources for small regulatory RNAs. In: Ausubel F M.
|
4 |
Bernstein E, Caudy A A, Hammond S M, Hannon G J (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818): 363-366
|
5 |
Boissonneault V, Plante I, Rivest S, Provost P (2009). MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem, 284(4): 1971-1981
|
6 |
Borrelli E, Nestler E J, Allis C D, Sassone-Corsi P (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6): 961-974
|
7 |
Bunger M K, Wilsbacher L D, Moran S M, Clendenin C, Radcliffe L A, Hogenesch J B, Simon M C, Takahashi J S, Bradfield C A (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103(7): 1009-1017
|
8 |
Carrettiero D C, Hernandez I, Neveu P, Papagiannakopoulos T, Kosik K S (2009). The cochaperone BAG2 sweeps paired helical filament- insoluble tau from the microtubule. J Neurosci, 29(7): 2151-2161
|
9 |
Cheng H Y M, Papp J W, Varlamova O, Dziema H, Russell B, Curfman J P, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007). microRNA modulation of circadian-clock period and entrainment. Neuron, 54(5): 813-829
|
10 |
Chisholm A D, Jin Y (2005). Neuronal differentiation in C. elegans. Curr Opin Cell Biol, 17(6): 682-689
|
11 |
Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri F F, Maio F, Cama A, Germanò A, Vita G, Tomasello F (2009). miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol, 93(3): 325-332
|
12 |
Costa-Mattioli M, Sossin W S, Klann E, Sonenberg N (2009). Translational control of long-lasting synaptic plasticity and memory. 61(1): 10-26
|
13 |
Cougot N, Babajko S, Séraphin B (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol, 165(1): 31-40
|
14 |
Deleault K M, Skinner S J, Brooks S A (2008). Tristetraprolin regulates TNF TNF-alpha mRNA stability via a proteasome dependent mechanism involving the combined action of the ERK and p38 pathways. Mol Immunol, 45(1): 13-24
|
15 |
Eberhart J K, He X, Swartz M E, Yan Y L, Song H, Boling T C, Kunerth A K, Walker M B, Kimmel C B, Postlethwait J H (2008). MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet, 40(3): 290-298
|
16 |
Feinbaum R, Ambros V (1999). The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev Biol, 210(1): 87-95
|
17 |
Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Di Marcotullio L, Caffarelli E, Screpanti I, Bozzoni I, Gulino A (2008). Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J, 27(19): 2616-2627
|
18 |
Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell S W, Kim T K, Greenberg M E, Schratt G (2009). Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J, 28(6): 697-710
|
19 |
Fiore R, Siegel G, Schratt G (2008). MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta, 1779(8): 471-478
|
20 |
Friggi-Grelin F, Lavenant-Staccini L, Therond P (2008). Control of antagonistic components of the hedgehog signaling pathway by microRNAs in Drosophila. Genetics, 179(1): 429-439
|
21 |
Gekakis N, Staknis D, Nguyen H B, Davis F C, Wilsbacher L D, King D P, Takahashi J S, Weitz C J (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science, 280(5369): 1564-1569
|
22 |
Giraldez A J, Cinalli R M, Glasner M E, Enright A J, Thomson J M, Baskerville S, Hammond S M, Bartel D P, Schier A F (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308(5723): 833-838
|
23 |
Griffiths-Jones S, Saini H K, van Dongen S, Enright A J (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res, 36(Database issue): D154-D158
|
24 |
Hébert S S, Horré K, Nicolaï L, Bergmans B, Papadopoulou A S, Delacourte A, De Strooper B (2009). MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis, 33(3): 422-428
|
25 |
Hébert S S, Horré K, Nicolaï L, Papadopoulou A S, Mandemakers W, Silahtaroglu A N, Kauppinen S, Delacourte A, De Strooper B (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A, 105(17): 6415-6420
|
26 |
Ikura T, Ogryzko V V, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000). Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell, 102(4): 463-473
|
27 |
Jellinger K A (2003). Rett Syndrome — an update. J Neural Transm, 110(6): 681-701
|
28 |
Junn E, Lee K W, Jeong B S, Chan T W, Im J Y, Mouradian M M (2009). Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A, 106(31): 13052-13057
|
29 |
Kapsimali M, Kloosterman W P, de Bruijn E, Rosa F, Plasterk R H, Wilson S W (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol, 8(8): R173
|
30 |
Karres J S, Hilgers V, Carrera I, Treisman J, Cohen S M (2007). The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell, 131(1): 136-145
|
31 |
Kim J, Inoue K, Ishii J, Vanti W B, Voronov S V, Murchison E, Hannon G, Abeliovich A (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317(5842): 1220-1224
|
32 |
Klein M E, Lioy D T, Ma L, Impey S, Mandel G, Goodman R H (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci, 10(12): 1513-1514
|
33 |
Kosik K S (2006). The neuronal microRNA system. Nat Rev Neurosci, 7(12): 911-920
|
34 |
Kuzin A, Kundu M, Brody T, Odenwald W F (2007). The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system. Dev Biol, 310(1): 35-43
|
35 |
Lee Y, Jeon K, Lee J T, Kim S, Kim V N (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 21(17): 4663-4670
|
36 |
Lee Y, Samaco R C, Gatchel J R, Thaller C, Orr H T, Zoghbi H Y (2008). miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci, 11(10): 1137-1139
|
37 |
Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen T D, Lopes B, Schiff D, Purow B, Abounader R (2009). MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res, 69(19): 7569-7576
|
38 |
Lukiw W J, Cui J G, Li Y Y, Culicchia F (2009). Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). J Neurooncol, 91(1): 27-32
|
39 |
Makeyev E V, Zhang J, Carrasco M A, Maniatis T (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell, 27(3): 435-448
|
40 |
Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, Sitbon E, Lithwick Yanai G, Elyakim E, Cholakh H, Gibori H, Spector Y, Bentwich Z, Barshack I, Rosenfeld N (2009). MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol, 19(3): 375-383
|
41 |
Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z (2003). The microRNA world: small is mighty. Trends Biochem Sci, 28(10): 534-540
|
42 |
Nomura T, Kimura M, Horii T, Morita S, Soejima H, Kudo S, Hatada I (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet, 17(8): 1192-1199
|
43 |
Nudelman A S, DiRocco D P, Lambert T J, Garelick M G, Le J, Nathanson N M, Storm D R (2009). Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. .doi: 1002/hipo.20646
|
44 |
Olsen P H, Ambros V (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 216(2): 671-680
|
45 |
Paroo Z, Ye X, Chen S, Liu Q (2009). Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell, 139(1): 112-122
|
46 |
Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772): 901-906
|
47 |
Rodriguez A, Griffiths-Jones S, Ashurst J L, Bradley A (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res, 14(10A): 1902-1910
|
48 |
Ruvkun G, Wightman B, Ha I (2004). The 20 years it took to recognize the importance of tiny RNAs. Cell, 116(2 Suppl): S93-S96, 2, S96
|
49 |
Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl E E, Nitsch R, Wulczyn F G (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol, 10(8): 987-993
|
50 |
Schratt G M, Tuebing F, Nigh E A, Kane C G, Sabatini M E, Kiebler M, Greenberg M E (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074): 283-289
|
51 |
Sempere L F, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol, 5(3): R13
|
52 |
Sethi P, Lukiw W J (2009). Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer's disease temporal lobe neocortex. Neurosci Lett, 459 (2), 100-104
|
53 |
Shi L, Ko M L, Ko G Y (2009). Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel alpha1C subunit in chicken cone photoreceptors. J Biol Chem, 284(38): 25791-25803
|
54 |
Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner P F, Busch C J, Kane C, Hübel K, Dekker F, Hedberg C, Rengarajan B, Drepper C, Waldmann H, Kauppinen S, Greenberg M E, Draguhn A, Rehmsmeier M, Martinez J, Schratt G M (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol, 11(6): 705-716
|
55 |
Silber J, James C D, Hodgson J G (2009). microRNAs in gliomas: small regulators of a big problem. Neuromolecular Med, 11(3): 208-222
|
56 |
Spence J (2009). Pathway prediction by bioinformatic analysis of the untranslated regions of the CFTR mRNA. Genomics, 94(1): 39-47
|
57 |
Terasawa K, Ichimura A, Sato F, Shimizu K, Tsujimoto G (2009). Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS J, 276(12): 3269-3276
|
58 |
Thatcher E J, Flynt A S, Li N, Patton J R, Patton J G (2007). MiRNA expression analysis during normal zebrafish development and following inhibition of the Hedgehog and Notch signaling pathways. Dev Dyn, 236(8): 2172-2180
|
59 |
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson M A, Licht J D, Pena J T, Rouhanifard S H, Muckenthaler M U, Tuschl T, Martin G R, Bauersachs J, Engelhardt S (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224): 980-984
|
60 |
Visvanathan J, Lee S, Lee B, Lee J W, Lee S K (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev, 21(7): 744-749
|
61 |
Vo N, Klein M E, Varlamova O, Keller D M, Yamamoto T, Goodman R H, Impey S (2005). A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A, 102(45): 16426-16431
|
62 |
Wang G, van der Walt J M, Mayhew G, Li Y J, Züchner S, Scott W K, Martin E R, Vance J M (2008). Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet, 82(2): 283-289
|
63 |
Wang W X, Rajeev B W, Stromberg A J, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson P T (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci, 28(5): 1213-1223
|
64 |
Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C (2009). miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull, 80(4-5): 268-273
|
65 |
Wienholds E, Plasterk R H (2005). MicroRNA function in animal development. FEBS Lett, 579(26): 5911-5922
|
66 |
Wu J I, Lessard J, Olave I A, Qiu Z, Ghosh A, Graef I A, Crabtree G R (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron, 56(1): 94-108
|
67 |
Wu L, Belasco J G (2005). Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol, 25(21): 9198-9208
|
68 |
Yoo A S, Staahl B T, Chen L, Crabtree G R (2009). MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature, 460(7255): 642-646
|
69 |
Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, Wang G, Zhang A, Jia Z, Han L, Jiang H (2009). Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol, 34(6): 1653-1660
|
70 |
Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Liu W, Qiang B, Zhao J, Yuan J, Peng X (2009). MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med, 87(1): 43-51
|
71 |
Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, Zhang W, Kang CDownregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest2010)
|
72 |
Ziegelbauer J M, Sullivan C S, Ganem D (2009). Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet, 41(1): 130-134
|
/
〈 | 〉 |