REVIEW

MicroRNAs in the neural system

  • Qiumin LE ,
  • Zhaoyang HU ,
  • Lan MA
Expand
  • Pharmacology Research Center and the State Key Laboratory of Medical Neurobiology, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai 200032, China

Received date: 10 Feb 2010

Accepted date: 18 Mar 2010

Published date: 01 Jun 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Precise spatio-temporal control of gene expression at transcriptional and translational levels is required for both of proper developmental programming of the central nervous system and the performing of normal brain functions. Many studies have demonstrated that microRNAs (miRNAs), a class of endogenous small RNAs, participate in post-transcriptional regulation of gene expression, and thus execute regulatory functions in various biologic processes. Emerging evidence indicates that miRNAs participate in gene regulatory networks during the developmental, physiologic, and pathological processes of the brain. In this review, we attempt to summarize some of the recent advances in research on the involvement of miRNAs in the regulation of neuronal development, neuroplasticity, and brain diseases, revealing their indispensable roles in neural functions.

Cite this article

Qiumin LE , Zhaoyang HU , Lan MA . MicroRNAs in the neural system[J]. Frontiers in Biology, 2010 , 5(3) : 219 -226 . DOI: 10.1007/s11515-010-0038-1

Acknowledgement

We sincerely thank members of our laboratory for discussions and suggestions. This work is supported by the Chinese National Science and Technology Major Project for Drug Discovery (No. 2009ZX09303-006).
1
Ashraf S I, McLoon A L, Sclarsic S M, Kunes S (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell, 124(1): 191-205

DOI

2
Barbato C, Arisi I, Frizzo M E, Brandi R, Da Sacco L, Masotti A (2009). Computational challenges in miRNA target predictions: to be or not to be a true target? J Biomed Biotechnol, 2009: 803069

3
Bell G W, Lewitter F (2009). Resources for small regulatory RNAs. In: Ausubel F M. ., eds. Current protocols in molecular biology. Chapter 19, Unit 19.8

4
Bernstein E, Caudy A A, Hammond S M, Hannon G J (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818): 363-366

DOI

5
Boissonneault V, Plante I, Rivest S, Provost P (2009). MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem, 284(4): 1971-1981

DOI

6
Borrelli E, Nestler E J, Allis C D, Sassone-Corsi P (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6): 961-974

DOI

7
Bunger M K, Wilsbacher L D, Moran S M, Clendenin C, Radcliffe L A, Hogenesch J B, Simon M C, Takahashi J S, Bradfield C A (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103(7): 1009-1017

DOI

8
Carrettiero D C, Hernandez I, Neveu P, Papagiannakopoulos T, Kosik K S (2009). The cochaperone BAG2 sweeps paired helical filament- insoluble tau from the microtubule. J Neurosci, 29(7): 2151-2161

DOI

9
Cheng H Y M, Papp J W, Varlamova O, Dziema H, Russell B, Curfman J P, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007). microRNA modulation of circadian-clock period and entrainment. Neuron, 54(5): 813-829

DOI

10
Chisholm A D, Jin Y (2005). Neuronal differentiation in C. elegans. Curr Opin Cell Biol, 17(6): 682-689

DOI

11
Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri F F, Maio F, Cama A, Germanò A, Vita G, Tomasello F (2009). miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol, 93(3): 325-332

12
Costa-Mattioli M, Sossin W S, Klann E, Sonenberg N (2009). Translational control of long-lasting synaptic plasticity and memory. 61(1): 10-26

DOI

13
Cougot N, Babajko S, Séraphin B (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol, 165(1): 31-40

DOI

14
Deleault K M, Skinner S J, Brooks S A (2008). Tristetraprolin regulates TNF TNF-alpha mRNA stability via a proteasome dependent mechanism involving the combined action of the ERK and p38 pathways. Mol Immunol, 45(1): 13-24

DOI

15
Eberhart J K, He X, Swartz M E, Yan Y L, Song H, Boling T C, Kunerth A K, Walker M B, Kimmel C B, Postlethwait J H (2008). MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet, 40(3): 290-298

DOI

16
Feinbaum R, Ambros V (1999). The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev Biol, 210(1): 87-95

DOI

17
Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Di Marcotullio L, Caffarelli E, Screpanti I, Bozzoni I, Gulino A (2008). Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J, 27(19): 2616-2627

DOI

18
Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell S W, Kim T K, Greenberg M E, Schratt G (2009). Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J, 28(6): 697-710

DOI

19
Fiore R, Siegel G, Schratt G (2008). MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta, 1779(8): 471-478

20
Friggi-Grelin F, Lavenant-Staccini L, Therond P (2008). Control of antagonistic components of the hedgehog signaling pathway by microRNAs in Drosophila. Genetics, 179(1): 429-439

DOI

21
Gekakis N, Staknis D, Nguyen H B, Davis F C, Wilsbacher L D, King D P, Takahashi J S, Weitz C J (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science, 280(5369): 1564-1569

DOI

22
Giraldez A J, Cinalli R M, Glasner M E, Enright A J, Thomson J M, Baskerville S, Hammond S M, Bartel D P, Schier A F (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308(5723): 833-838

DOI

23
Griffiths-Jones S, Saini H K, van Dongen S, Enright A J (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res, 36(Database issue): D154-D158

24
Hébert S S, Horré K, Nicolaï L, Bergmans B, Papadopoulou A S, Delacourte A, De Strooper B (2009). MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis, 33(3): 422-428

DOI

25
Hébert S S, Horré K, Nicolaï L, Papadopoulou A S, Mandemakers W, Silahtaroglu A N, Kauppinen S, Delacourte A, De Strooper B (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A, 105(17): 6415-6420

DOI

26
Ikura T, Ogryzko V V, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000). Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell, 102(4): 463-473

DOI

27
Jellinger K A (2003). Rett Syndrome — an update. J Neural Transm, 110(6): 681-701

DOI

28
Junn E, Lee K W, Jeong B S, Chan T W, Im J Y, Mouradian M M (2009). Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A, 106(31): 13052-13057

DOI

29
Kapsimali M, Kloosterman W P, de Bruijn E, Rosa F, Plasterk R H, Wilson S W (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol, 8(8): R173

DOI

30
Karres J S, Hilgers V, Carrera I, Treisman J, Cohen S M (2007). The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell, 131(1): 136-145

DOI

31
Kim J, Inoue K, Ishii J, Vanti W B, Voronov S V, Murchison E, Hannon G, Abeliovich A (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317(5842): 1220-1224

DOI

32
Klein M E, Lioy D T, Ma L, Impey S, Mandel G, Goodman R H (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci, 10(12): 1513-1514

DOI

33
Kosik K S (2006). The neuronal microRNA system. Nat Rev Neurosci, 7(12): 911-920

DOI

34
Kuzin A, Kundu M, Brody T, Odenwald W F (2007). The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system. Dev Biol, 310(1): 35-43

DOI

35
Lee Y, Jeon K, Lee J T, Kim S, Kim V N (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 21(17): 4663-4670

DOI

36
Lee Y, Samaco R C, Gatchel J R, Thaller C, Orr H T, Zoghbi H Y (2008). miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci, 11(10): 1137-1139

DOI

37
Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen T D, Lopes B, Schiff D, Purow B, Abounader R (2009). MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res, 69(19): 7569-7576

DOI

38
Lukiw W J, Cui J G, Li Y Y, Culicchia F (2009). Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). J Neurooncol, 91(1): 27-32

DOI

39
Makeyev E V, Zhang J, Carrasco M A, Maniatis T (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell, 27(3): 435-448

40
Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, Sitbon E, Lithwick Yanai G, Elyakim E, Cholakh H, Gibori H, Spector Y, Bentwich Z, Barshack I, Rosenfeld N (2009). MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol, 19(3): 375-383

DOI

41
Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z (2003). The microRNA world: small is mighty. Trends Biochem Sci, 28(10): 534-540

DOI

42
Nomura T, Kimura M, Horii T, Morita S, Soejima H, Kudo S, Hatada I (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet, 17(8): 1192-1199

DOI

43
Nudelman A S, DiRocco D P, Lambert T J, Garelick M G, Le J, Nathanson N M, Storm D R (2009). Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. .doi: 1002/hipo.20646

DOI

44
Olsen P H, Ambros V (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 216(2): 671-680

DOI

45
Paroo Z, Ye X, Chen S, Liu Q (2009). Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell, 139(1): 112-122

DOI

46
Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772): 901-906

DOI

47
Rodriguez A, Griffiths-Jones S, Ashurst J L, Bradley A (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res, 14(10A): 1902-1910

DOI

48
Ruvkun G, Wightman B, Ha I (2004). The 20 years it took to recognize the importance of tiny RNAs. Cell, 116(2 Suppl): S93-S96, 2, S96

49
Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl E E, Nitsch R, Wulczyn F G (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol, 10(8): 987-993

DOI

50
Schratt G M, Tuebing F, Nigh E A, Kane C G, Sabatini M E, Kiebler M, Greenberg M E (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074): 283-289

DOI

51
Sempere L F, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol, 5(3): R13

DOI

52
Sethi P, Lukiw W J (2009). Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer's disease temporal lobe neocortex. Neurosci Lett, 459 (2), 100-104

DOI

53
Shi L, Ko M L, Ko G Y (2009). Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel alpha1C subunit in chicken cone photoreceptors. J Biol Chem, 284(38): 25791-25803

DOI

54
Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner P F, Busch C J, Kane C, Hübel K, Dekker F, Hedberg C, Rengarajan B, Drepper C, Waldmann H, Kauppinen S, Greenberg M E, Draguhn A, Rehmsmeier M, Martinez J, Schratt G M (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol, 11(6): 705-716

DOI

55
Silber J, James C D, Hodgson J G (2009). microRNAs in gliomas: small regulators of a big problem. Neuromolecular Med, 11(3): 208-222

DOI

56
Spence J (2009). Pathway prediction by bioinformatic analysis of the untranslated regions of the CFTR mRNA. Genomics, 94(1): 39-47

DOI

57
Terasawa K, Ichimura A, Sato F, Shimizu K, Tsujimoto G (2009). Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS J, 276(12): 3269-3276

DOI

58
Thatcher E J, Flynt A S, Li N, Patton J R, Patton J G (2007). MiRNA expression analysis during normal zebrafish development and following inhibition of the Hedgehog and Notch signaling pathways. Dev Dyn, 236(8): 2172-2180

DOI

59
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson M A, Licht J D, Pena J T, Rouhanifard S H, Muckenthaler M U, Tuschl T, Martin G R, Bauersachs J, Engelhardt S (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224): 980-984

DOI

60
Visvanathan J, Lee S, Lee B, Lee J W, Lee S K (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev, 21(7): 744-749

DOI

61
Vo N, Klein M E, Varlamova O, Keller D M, Yamamoto T, Goodman R H, Impey S (2005). A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A, 102(45): 16426-16431

DOI

62
Wang G, van der Walt J M, Mayhew G, Li Y J, Züchner S, Scott W K, Martin E R, Vance J M (2008). Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet, 82(2): 283-289

DOI

63
Wang W X, Rajeev B W, Stromberg A J, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson P T (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci, 28(5): 1213-1223

DOI

64
Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C (2009). miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull, 80(4-5): 268-273

DOI

65
Wienholds E, Plasterk R H (2005). MicroRNA function in animal development. FEBS Lett, 579(26): 5911-5922

DOI

66
Wu J I, Lessard J, Olave I A, Qiu Z, Ghosh A, Graef I A, Crabtree G R (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron, 56(1): 94-108

DOI

67
Wu L, Belasco J G (2005). Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol, 25(21): 9198-9208

DOI

68
Yoo A S, Staahl B T, Chen L, Crabtree G R (2009). MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature, 460(7255): 642-646

69
Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, Wang G, Zhang A, Jia Z, Han L, Jiang H (2009). Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol, 34(6): 1653-1660

70
Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Liu W, Qiang B, Zhao J, Yuan J, Peng X (2009). MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med, 87(1): 43-51

DOI

71
Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, Zhang W, Kang CDownregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest2010)

72
Ziegelbauer J M, Sullivan C S, Ganem D (2009). Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet, 41(1): 130-134

DOI

Outlines

/