MicroRNAs in the neural system

Qiumin LE, Zhaoyang HU, Lan MA

PDF(1210 KB)
PDF(1210 KB)
Front. Biol. ›› 2010, Vol. 5 ›› Issue (3) : 219-226. DOI: 10.1007/s11515-010-0038-1
REVIEW

MicroRNAs in the neural system

Author information +
History +

Abstract

Precise spatio-temporal control of gene expression at transcriptional and translational levels is required for both of proper developmental programming of the central nervous system and the performing of normal brain functions. Many studies have demonstrated that microRNAs (miRNAs), a class of endogenous small RNAs, participate in post-transcriptional regulation of gene expression, and thus execute regulatory functions in various biologic processes. Emerging evidence indicates that miRNAs participate in gene regulatory networks during the developmental, physiologic, and pathological processes of the brain. In this review, we attempt to summarize some of the recent advances in research on the involvement of miRNAs in the regulation of neuronal development, neuroplasticity, and brain diseases, revealing their indispensable roles in neural functions.

Keywords

MicroRNAs / brain / central nervous system / development / neurological diseases

Cite this article

Download citation ▾
Qiumin LE, Zhaoyang HU, Lan MA. MicroRNAs in the neural system. Front Biol, 2010, 5(3): 219‒226 https://doi.org/10.1007/s11515-010-0038-1

References

[1]
Ashraf S I, McLoon A L, Sclarsic S M, Kunes S (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell, 124(1): 191-205
CrossRef Google scholar
[2]
Barbato C, Arisi I, Frizzo M E, Brandi R, Da Sacco L, Masotti A (2009). Computational challenges in miRNA target predictions: to be or not to be a true target? J Biomed Biotechnol, 2009: 803069
[3]
Bell G W, Lewitter F (2009). Resources for small regulatory RNAs. In: Ausubel F M. ., eds. Current protocols in molecular biology. Chapter 19, Unit 19.8
[4]
Bernstein E, Caudy A A, Hammond S M, Hannon G J (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818): 363-366
CrossRef Google scholar
[5]
Boissonneault V, Plante I, Rivest S, Provost P (2009). MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem, 284(4): 1971-1981
CrossRef Google scholar
[6]
Borrelli E, Nestler E J, Allis C D, Sassone-Corsi P (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6): 961-974
CrossRef Google scholar
[7]
Bunger M K, Wilsbacher L D, Moran S M, Clendenin C, Radcliffe L A, Hogenesch J B, Simon M C, Takahashi J S, Bradfield C A (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103(7): 1009-1017
CrossRef Google scholar
[8]
Carrettiero D C, Hernandez I, Neveu P, Papagiannakopoulos T, Kosik K S (2009). The cochaperone BAG2 sweeps paired helical filament- insoluble tau from the microtubule. J Neurosci, 29(7): 2151-2161
CrossRef Google scholar
[9]
Cheng H Y M, Papp J W, Varlamova O, Dziema H, Russell B, Curfman J P, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007). microRNA modulation of circadian-clock period and entrainment. Neuron, 54(5): 813-829
CrossRef Google scholar
[10]
Chisholm A D, Jin Y (2005). Neuronal differentiation in C. elegans. Curr Opin Cell Biol, 17(6): 682-689
CrossRef Google scholar
[11]
Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri F F, Maio F, Cama A, Germanò A, Vita G, Tomasello F (2009). miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol, 93(3): 325-332
[12]
Costa-Mattioli M, Sossin W S, Klann E, Sonenberg N (2009). Translational control of long-lasting synaptic plasticity and memory. 61(1): 10-26
CrossRef Google scholar
[13]
Cougot N, Babajko S, Séraphin B (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol, 165(1): 31-40
CrossRef Google scholar
[14]
Deleault K M, Skinner S J, Brooks S A (2008). Tristetraprolin regulates TNF TNF-alpha mRNA stability via a proteasome dependent mechanism involving the combined action of the ERK and p38 pathways. Mol Immunol, 45(1): 13-24
CrossRef Google scholar
[15]
Eberhart J K, He X, Swartz M E, Yan Y L, Song H, Boling T C, Kunerth A K, Walker M B, Kimmel C B, Postlethwait J H (2008). MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet, 40(3): 290-298
CrossRef Google scholar
[16]
Feinbaum R, Ambros V (1999). The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev Biol, 210(1): 87-95
CrossRef Google scholar
[17]
Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Di Marcotullio L, Caffarelli E, Screpanti I, Bozzoni I, Gulino A (2008). Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J, 27(19): 2616-2627
CrossRef Google scholar
[18]
Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell S W, Kim T K, Greenberg M E, Schratt G (2009). Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J, 28(6): 697-710
CrossRef Google scholar
[19]
Fiore R, Siegel G, Schratt G (2008). MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta, 1779(8): 471-478
[20]
Friggi-Grelin F, Lavenant-Staccini L, Therond P (2008). Control of antagonistic components of the hedgehog signaling pathway by microRNAs in Drosophila. Genetics, 179(1): 429-439
CrossRef Google scholar
[21]
Gekakis N, Staknis D, Nguyen H B, Davis F C, Wilsbacher L D, King D P, Takahashi J S, Weitz C J (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science, 280(5369): 1564-1569
CrossRef Google scholar
[22]
Giraldez A J, Cinalli R M, Glasner M E, Enright A J, Thomson J M, Baskerville S, Hammond S M, Bartel D P, Schier A F (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308(5723): 833-838
CrossRef Google scholar
[23]
Griffiths-Jones S, Saini H K, van Dongen S, Enright A J (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res, 36(Database issue): D154-D158
[24]
Hébert S S, Horré K, Nicolaï L, Bergmans B, Papadopoulou A S, Delacourte A, De Strooper B (2009). MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis, 33(3): 422-428
CrossRef Google scholar
[25]
Hébert S S, Horré K, Nicolaï L, Papadopoulou A S, Mandemakers W, Silahtaroglu A N, Kauppinen S, Delacourte A, De Strooper B (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A, 105(17): 6415-6420
CrossRef Google scholar
[26]
Ikura T, Ogryzko V V, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000). Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell, 102(4): 463-473
CrossRef Google scholar
[27]
Jellinger K A (2003). Rett Syndrome — an update. J Neural Transm, 110(6): 681-701
CrossRef Google scholar
[28]
Junn E, Lee K W, Jeong B S, Chan T W, Im J Y, Mouradian M M (2009). Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A, 106(31): 13052-13057
CrossRef Google scholar
[29]
Kapsimali M, Kloosterman W P, de Bruijn E, Rosa F, Plasterk R H, Wilson S W (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol, 8(8): R173
CrossRef Google scholar
[30]
Karres J S, Hilgers V, Carrera I, Treisman J, Cohen S M (2007). The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell, 131(1): 136-145
CrossRef Google scholar
[31]
Kim J, Inoue K, Ishii J, Vanti W B, Voronov S V, Murchison E, Hannon G, Abeliovich A (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317(5842): 1220-1224
CrossRef Google scholar
[32]
Klein M E, Lioy D T, Ma L, Impey S, Mandel G, Goodman R H (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci, 10(12): 1513-1514
CrossRef Google scholar
[33]
Kosik K S (2006). The neuronal microRNA system. Nat Rev Neurosci, 7(12): 911-920
CrossRef Google scholar
[34]
Kuzin A, Kundu M, Brody T, Odenwald W F (2007). The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system. Dev Biol, 310(1): 35-43
CrossRef Google scholar
[35]
Lee Y, Jeon K, Lee J T, Kim S, Kim V N (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 21(17): 4663-4670
CrossRef Google scholar
[36]
Lee Y, Samaco R C, Gatchel J R, Thaller C, Orr H T, Zoghbi H Y (2008). miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci, 11(10): 1137-1139
CrossRef Google scholar
[37]
Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen T D, Lopes B, Schiff D, Purow B, Abounader R (2009). MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res, 69(19): 7569-7576
CrossRef Google scholar
[38]
Lukiw W J, Cui J G, Li Y Y, Culicchia F (2009). Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). J Neurooncol, 91(1): 27-32
CrossRef Google scholar
[39]
Makeyev E V, Zhang J, Carrasco M A, Maniatis T (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell, 27(3): 435-448
[40]
Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, Sitbon E, Lithwick Yanai G, Elyakim E, Cholakh H, Gibori H, Spector Y, Bentwich Z, Barshack I, Rosenfeld N (2009). MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol, 19(3): 375-383
CrossRef Google scholar
[41]
Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z (2003). The microRNA world: small is mighty. Trends Biochem Sci, 28(10): 534-540
CrossRef Google scholar
[42]
Nomura T, Kimura M, Horii T, Morita S, Soejima H, Kudo S, Hatada I (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet, 17(8): 1192-1199
CrossRef Google scholar
[43]
Nudelman A S, DiRocco D P, Lambert T J, Garelick M G, Le J, Nathanson N M, Storm D R (2009). Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. .doi: 1002/hipo.20646
CrossRef Google scholar
[44]
Olsen P H, Ambros V (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 216(2): 671-680
CrossRef Google scholar
[45]
Paroo Z, Ye X, Chen S, Liu Q (2009). Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell, 139(1): 112-122
CrossRef Google scholar
[46]
Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772): 901-906
CrossRef Google scholar
[47]
Rodriguez A, Griffiths-Jones S, Ashurst J L, Bradley A (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res, 14(10A): 1902-1910
CrossRef Google scholar
[48]
Ruvkun G, Wightman B, Ha I (2004). The 20 years it took to recognize the importance of tiny RNAs. Cell, 116(2 Suppl): S93-S96, 2, S96
[49]
Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl E E, Nitsch R, Wulczyn F G (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol, 10(8): 987-993
CrossRef Google scholar
[50]
Schratt G M, Tuebing F, Nigh E A, Kane C G, Sabatini M E, Kiebler M, Greenberg M E (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074): 283-289
CrossRef Google scholar
[51]
Sempere L F, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol, 5(3): R13
CrossRef Google scholar
[52]
Sethi P, Lukiw W J (2009). Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer's disease temporal lobe neocortex. Neurosci Lett, 459 (2), 100-104
CrossRef Google scholar
[53]
Shi L, Ko M L, Ko G Y (2009). Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel alpha1C subunit in chicken cone photoreceptors. J Biol Chem, 284(38): 25791-25803
CrossRef Google scholar
[54]
Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner P F, Busch C J, Kane C, Hübel K, Dekker F, Hedberg C, Rengarajan B, Drepper C, Waldmann H, Kauppinen S, Greenberg M E, Draguhn A, Rehmsmeier M, Martinez J, Schratt G M (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol, 11(6): 705-716
CrossRef Google scholar
[55]
Silber J, James C D, Hodgson J G (2009). microRNAs in gliomas: small regulators of a big problem. Neuromolecular Med, 11(3): 208-222
CrossRef Google scholar
[56]
Spence J (2009). Pathway prediction by bioinformatic analysis of the untranslated regions of the CFTR mRNA. Genomics, 94(1): 39-47
CrossRef Google scholar
[57]
Terasawa K, Ichimura A, Sato F, Shimizu K, Tsujimoto G (2009). Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS J, 276(12): 3269-3276
CrossRef Google scholar
[58]
Thatcher E J, Flynt A S, Li N, Patton J R, Patton J G (2007). MiRNA expression analysis during normal zebrafish development and following inhibition of the Hedgehog and Notch signaling pathways. Dev Dyn, 236(8): 2172-2180
CrossRef Google scholar
[59]
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson M A, Licht J D, Pena J T, Rouhanifard S H, Muckenthaler M U, Tuschl T, Martin G R, Bauersachs J, Engelhardt S (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224): 980-984
CrossRef Google scholar
[60]
Visvanathan J, Lee S, Lee B, Lee J W, Lee S K (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev, 21(7): 744-749
CrossRef Google scholar
[61]
Vo N, Klein M E, Varlamova O, Keller D M, Yamamoto T, Goodman R H, Impey S (2005). A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A, 102(45): 16426-16431
CrossRef Google scholar
[62]
Wang G, van der Walt J M, Mayhew G, Li Y J, Züchner S, Scott W K, Martin E R, Vance J M (2008). Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet, 82(2): 283-289
CrossRef Google scholar
[63]
Wang W X, Rajeev B W, Stromberg A J, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson P T (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci, 28(5): 1213-1223
CrossRef Google scholar
[64]
Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C (2009). miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull, 80(4-5): 268-273
CrossRef Google scholar
[65]
Wienholds E, Plasterk R H (2005). MicroRNA function in animal development. FEBS Lett, 579(26): 5911-5922
CrossRef Google scholar
[66]
Wu J I, Lessard J, Olave I A, Qiu Z, Ghosh A, Graef I A, Crabtree G R (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron, 56(1): 94-108
CrossRef Google scholar
[67]
Wu L, Belasco J G (2005). Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol, 25(21): 9198-9208
CrossRef Google scholar
[68]
Yoo A S, Staahl B T, Chen L, Crabtree G R (2009). MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature, 460(7255): 642-646
[69]
Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, Wang G, Zhang A, Jia Z, Han L, Jiang H (2009). Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol, 34(6): 1653-1660
[70]
Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Liu W, Qiang B, Zhao J, Yuan J, Peng X (2009). MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med, 87(1): 43-51
CrossRef Google scholar
[71]
Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, Zhang W, Kang CDownregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest2010)
[72]
Ziegelbauer J M, Sullivan C S, Ganem D (2009). Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet, 41(1): 130-134
CrossRef Google scholar

Acknowledgement

We sincerely thank members of our laboratory for discussions and suggestions. This work is supported by the Chinese National Science and Technology Major Project for Drug Discovery (No. 2009ZX09303-006).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(1210 KB)

Accesses

Citations

Detail

Sections
Recommended

/