MINI-REVIEW

Metabolic regulation of adult stem cell-derived neurons

  • Ruth Beckervordersandforth ,
  • Benjamin M. Häberle ,
  • D. Chichung Lie
Expand
  • Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Received date: 04 Dec 2014

Accepted date: 11 Feb 2015

Published date: 06 May 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The discovery of continuous generation of functional neurons throughout life has emerged as a major contributor to plasticity in defined regions of the adult mammalian brain. Work over the past decades identified cellular constituents of the distinct adult neurogenic niches as well as numerous signaling pathways, transcriptional and epigenetic regulators that exert tight control over the production of new neurons from resident stem cells. Recent studies uncovered developmental stage-specific adaptations of metabolic circuits and have provided evidence for their central regulatory function in the adult neurogenic lineage. Moreover, there is increasing evidence for a regulatory impact of a wide range of systemic metabolic factors including exercise induced metabolic changes and diet on the development of adult-born neurons. Here, we will summarize current knowledge and emerging principles underlying the metabolic control of neuronal maturation in adult neurogenesis.

Cite this article

Ruth Beckervordersandforth , Benjamin M. Häberle , D. Chichung Lie . Metabolic regulation of adult stem cell-derived neurons[J]. Frontiers in Biology, 2015 , 10(2) : 107 -116 . DOI: 10.1007/s11515-015-1351-5

Acknowledgements

This work was supported by the Bavarian Research Network on Human induced Pluripotent Stem Cells “FORIPS,” the University Hospital Erlangen [Interdisciplinary center for clinical research (IZKF) grants E12 and E16 to DCL] and the Deutsche Forschungsgemeinschaft (BE 5136/1-1 to RB). The authors declare no competing financial interests.
R. Beckervordersandforth, B. M. Häeberle, and D. C. Lie declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1
Aimone J B, Deng W, Gage F H (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70(4): 589–596

DOI PMID

2
Alle H, Roth A, Geiger J R (2009). Energy-efficient action potentials in hippocampal mossy fibers. Science, 325(5946): 1405–1408

DOI PMID

3
Altarejos J Y, Montminy M (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol, 12(3): 141–151

DOI PMID

4
Alvarez J I, Katayama T, Prat A (2013). Glial influence on the blood brain barrier. Glia, 61(12): 1939–1958

DOI PMID

5
Amiri A, Cho W, Zhou J, Birnbaum S G, Sinton C M, McKay R M, Parada L F (2012). Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci, 32(17): 5880–5890

DOI PMID

6
Arai Y, Kojima T, Takayama M, Hirose N (2009). The metabolic syndrome, IGF-1, and insulin action. Mol Cell Endocrinol, 299(1): 124–128

DOI PMID

7
Attardi G, Schatz G (1988). Biogenesis of mitochondria. Annu Rev Cell Biol, 4(1): 289–333

DOI PMID

8
Attwell D, Laughlin S B (2001). An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab, 21(10): 1133–1145

DOI PMID

9
Bélanger M, Allaman I, Magistretti P J (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab, 14(6): 724–738

DOI PMID

10
Bertholet A M, Millet A M, Guillermin O, Daloyau M, Davezac N, Miquel M C, Belenguer P (2013). OPA1 loss of function affects in vitro neuronal maturation. Brain, 136(Pt 5): 1518–1533

DOI PMID

11
Broughton S, Partridge L (2009). Insulin/IGF-like signalling, the central nervous system and aging. Biochem J, 418(1): 1–12

DOI PMID

12
Cheng A, Hou Y, Mattson M P (2010). Mitochondria and neuroplasticity. ASN Neuro, 2(5): e00045

DOI PMID

13
Cheng A, Wan R, Yang J L, Kamimura N, Son T G, Ouyang X, Luo Y, Okun E, Mattson M P (2012). Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun, 3: 1250

DOI PMID

14
Courchet J, Lewis T L Jr, Lee S, Courchet V, Liou D Y, Aizawa S, Polleux F (2013). Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell, 153(7): 1510–1525

DOI PMID

15
Dickey A S, Strack S (2011). PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci, 31(44): 15716–15726

DOI PMID

16
Dietrich M O, Andrews Z B, Horvath T L (2008). Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci, 28(42): 10766–10771

DOI PMID

17
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317

DOI PMID

18
Espósito M S, Piatti V C, Laplagne D A, Morgenstern N A, Ferrari C C, Pitossi F J, Schinder A F (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci, 25(44): 10074–10086

DOI PMID

19
Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo C J, Palmer T D (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci, 18(10): 2803–2812

DOI PMID

20
Fabel K, Kempermann G (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med, 10(2): 59–66

DOI PMID

21
Fabel K, Wolf S A, Ehninger D, Babu H, Leal-Galicia P, Kempermann G (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci, 3: 50

PMID

22
Frayling C, Britton R, Dale N (2011). ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol, 589(Pt 9): 2275–2286

DOI PMID

23
Fujioka T, Fujioka A, Duman R S (2004). Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. J Neurosci, 24(2): 319–328

DOI PMID

24
Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593

DOI PMID

25
Ge S, Pradhan D A, Ming G L, Song H (2007). GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci, 30(1): 1–8

DOI PMID

26
Giachino C, De Marchis S, Giampietro C, Parlato R, Perroteau I, Schütz G, Fasolo A, Peretto P (2005). cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb. J Neurosci, 25(44): 10105–10118

DOI PMID

27
Gouazé A, Brenachot X, Rigault C, Krezymon A, Rauch C, Nédélec E, Lemoine A, Gascuel J, Bauer S, Pénicaud L, Benani A (2013). Cerebral cell renewal in adult mice controls the onset of obesity. PLoS ONE, 8(8): e72029

DOI PMID

28
Hawley J A, Hargreaves M, Joyner M J, Zierath J R (2014). Integrative biology of exercise. Cell, 159(4): 738–749

DOI PMID

29
Herold S, Jagasia R, Merz K, Wassmer K, Lie D C (2011). CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol Cell Neurosci, 46(1): 79–88

DOI PMID

30
Herrero-Mendez A, Almeida A, Fernández E, Maestre C, Moncada S, Bolaños J P (2009). The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol, 11(6): 747–752

DOI PMID

31
Itoh Y, Esaki T, Shimoji K, Cook M, Law M J, Kaufman E, Sokoloff L (2003). Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA, 100(8): 4879–4884

DOI PMID

32
Jagasia R, Steib K, Englberger E, Herold S, Faus-Kessler T, Saxe M, Gage F H, Song H, Lie D C (2009). GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci, 29(25): 7966–7977

DOI PMID

33
Kheirbek M A, Klemenhagen K C, Sahay A, Hen R (2012). Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci, 15(12): 1613–1620

DOI PMID

34
Kim D Y, Rhee I, Paik J (2014). Metabolic circuits in neural stem cells. Cell Mol Life Sci, 71(21): 4221–4241

DOI PMID

35
Kim J Y, Duan X, Liu C Y, Jang M H, Guo J U, Pow-anpongkul N, Kang E, Song H, Ming G L (2009). DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron, 63(6): 761–773

DOI PMID

36
Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051–1064

DOI PMID

37
Kivelä R, Bry M, Robciuc M R, Räsänen M, Taavitsainen M, Silvola J M, Saraste A, Hulmi J J, Anisimov A, Mäyränpää M I, Lindeman J H, Eklund L, Hellberg S, Hlushchuk R, Zhuang Z W, Simons M, Djonov V, Knuuti J, Mervaala E, Alitalo K (2014). VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol Med, 6(3): 307–321

PMID

38
Klempin F, Beis D, Mosienko V, Kempermann G, Bader M, Alenina N (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. J Neurosci, 33(19): 8270–8275

DOI PMID

39
Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230

DOI PMID

40
Kokoeva M V, Yin H, Flier J S (2005). Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science, 310(5748): 679–683

DOI PMID

41
Kokoeva M V, Yin H, Flier J S (2007). Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol, 505(2): 209–220

DOI PMID

42
Kumar V B, Binu S, Soumya S J, K H, Sudhakaran P R (2014). Regulation of vascular endothelial growth factor by metabolic context of the cell. Glycoconj J, 31(6-7): 427–434

DOI PMID

43
Lee D A, Bedont J L, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012). Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci, 15(5): 700–702

DOI PMID

44
Lee D A, Blackshaw S (2012). Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci, 30(8): 615–621

DOI PMID

45
Lee D A, Yoo S, Pak T, Salvatierra J, Velarde E, Aja S, Blackshaw S (2014). Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front Neurosci, 8: 157

DOI PMID

46
Li Z, Jo J, Jia J M, Lo S C, Whitcomb D J, Jiao S, Cho K, Sheng M (2010). Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell, 141(5): 859–871

DOI PMID

47
Li Z, Okamoto K, Hayashi Y, Sheng M (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell, 119(6): 873–887

DOI PMID

48
Lipton J O, Sahin M (2014). The neurology of mTOR. Neuron, 84(2): 275–291

DOI PMID

49
MacAskill A F, Atkin T A, Kittler J T (2010). Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci, 32(2): 231–240

DOI PMID

50
Macaskill A F, Rinholm J E, Twelvetrees A E, Arancibia-Carcamo I L, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler J T (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron, 61(4): 541–555

DOI PMID

51
Marín-Burgin A, Mongiat L A, Pardi M B, Schinder A F (2012). Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science, 335(6073): 1238–1242

DOI PMID

52
Mattson M P (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab, 16(6): 706–722

DOI PMID

53
Merz K, Herold S, Lie D C (2011). CREB in adult neurogenesis—master and partner in the development of adult-born neurons? Eur J Neurosci, 33(6): 1078–1086

DOI PMID

54
Mihaylova M M, Sabatini D M, Yilmaz O H (2014). Dietary and metabolic control of stem cell function in physiology and cancer. Cell Stem Cell, 14(3): 292–305

DOI PMID

55
Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702

DOI PMID

56
Mishra P, Chan D C (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol, 15(10): 634–646

DOI PMID

57
Nakagawa S, Kim J E, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman R S (2002). Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci, 22(22): 9868–9876

PMID

58
Orellana J A, Sáez P J, Cortés-Campos C, Elizondo R J, Shoji K F, Contreras-Duarte S, Figueroa V, Velarde V, Jiang J X, Nualart F, Sáez J C, García M A (2012). Glucose increases intracellular free Ca2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia, 60(1): 53–68

DOI PMID

59
Oruganty-Das A, Ng T, Udagawa T, Goh E L, Richter J D (2012). Translational control of mitochondrial energy production mediates neuron morphogenesis. Cell Metab, 16(6): 789–800

DOI PMID

60
Osman C, Voelker D R, Langer T (2011). Making heads or tails of phospholipids in mitochondria. J Cell Biol, 192(1): 7–16

DOI PMID

61
Pellerin L, Magistretti P J (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA, 91(22): 10625–10629

DOI PMID

62
Pereira A C, Huddleston D E, Brickman A M, Sosunov A A, Hen R, McKhann G M, Sloan R, Gage F H, Brown T R, Small S A (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA, 104(13): 5638–5643

DOI PMID

63
Piatti V C, Davies-Sala M G, Espósito M S, Mongiat L A, Trinchero M F, Schinder A F (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci, 31(21): 7715–7728

DOI PMID

64
Pieper A A, Xie S, Capota E, Estill S J, Zhong J, Long J M, Becker G L, Huntington P, Goldman S E, Shen C H, Capota M, Britt J K, Kotti T, Ure K, Brat D J, Williams N S, MacMillan K S, Naidoo J, Melito L, Hsieh J, De Brabander J, Ready J M, McKnight S L (2010). Discovery of a proneurogenic, neuroprotective chemical. Cell, 142(1): 39–51

DOI PMID

65
Pierce A A, Xu A W (2010). De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci, 30(2): 723–730

DOI PMID

66
Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolaños J P (2012). Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ, 19(10): 1582–1589

DOI PMID

67
Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science, 322(5907): 1551–1555

DOI PMID

68
Sahay A, Wilson D A, Hen R (2011). Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron, 70(4): 582–588

DOI PMID

69
Schmidt-Hieber C, Jonas P, Bischofberger J (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429(6988): 184–187

DOI PMID

70
Schousboe A, Scafidi S, Bak L K, Waagepetersen H S, McKenna M C (2014). Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol, 11: 13–30

DOI PMID

71
Sousa-Ferreira L, de Almeida L P, Cavadas C (2014). Role of hypothalamic neurogenesis in feeding regulation. Trends Endocrinol Metab, 25(2): 80–88

DOI PMID

72
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227

DOI PMID

73
Spiegelman B M (2007). Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp, 287: 60–63, discussion 63–69

DOI PMID

74
Steib K, Schäffner I, Jagasia R, Ebert B, Lie D C (2014). Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci, 34(19): 6624–6633

DOI PMID

75
Steketee M B, Moysidis S N, Weinstein J E, Kreymerman A, Silva J P, Iqbal S, Goldberg J L (2012). Mitochondrial dynamics regulate growth cone motility, guidance, and neurite growth rate in perinatal retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci, 53(11): 7402–7411

DOI PMID

76
Stocca G, Schmidt-Hieber C, Bischofberger J (2008). Differential dendritic Ca2+ signalling in young and mature hippocampal granule cells. J Physiol, 586(16): 3795–3811

DOI PMID

77
Stoll E A, Cheung W, Mikheev A M, Sweet I R, Bielas J H, Zhang J, Rostomily R C, Horner P J (2011). Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. J Biol Chem, 286(44): 38592–38601

DOI PMID

78
Stranahan A M, Arumugam T V, Cutler R G, Lee K, Egan J M, Mattson M P (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci, 11(3): 309–317

DOI PMID

79
Sun G J, Sailor K A, Mahmood Q A, Chavali N, Christian K M, Song H, Ming G L (2013). Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. J Neurosci, 33(28): 11400–11411

DOI PMID

80
Tatsuta T, Langer T (2008). Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J, 27(2): 306–314

DOI PMID

81
Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907

DOI PMID

82
Trejo J L, Carro E, Torres-Aleman I (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci, 21(5): 1628–1634

PMID

83
van Praag H (2009). Exercise and the brain: something to chew on. Trends Neurosci, 32(5): 283–290

DOI PMID

84
van Praag H, Kempermann G, Gage F H (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 2(3): 266–270

DOI PMID

85
van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030–1034

DOI PMID

86
Wang X, Schwarz T L (2009). The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell, 136(1): 163–174

DOI PMID

87
Ward P S, Thompson C B (2012). Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 21(3): 297–308

DOI PMID

88
Winner B, Kohl Z, Gage F H (2011). Neurodegenerative disease and adult neurogenesis. Eur J Neurosci, 33(6): 1139–1151

DOI PMID

89
Wu L E, Meoli C C, Mangiafico S P, Fazakerley D J, Cogger V C, Mohamad M, Pant H, Kang M J, Powter E, Burchfield J G, Xirouchaki C E, Mikolaizak A S, Stöckli J, Kolumam G, van Bruggen N, Gamble J R, Le Couteur D G, Cooney G J, Andrikopoulos S, James D E (2014). Systemic VEGF-A neutralization ameliorates diet-induced metabolic dysfunction. Diabetes, 63(8): 2656–2667

DOI PMID

90
Yeo H, Lyssiotis C A, Zhang Y, Ying H, Asara J M, Cantley L C, Paik J H (2013). FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J, 32(19): 2589–2602

DOI PMID

91
Zainuddin M S, Thuret S (2012). Nutrition, adult hippocampal neurogenesis and mental health. Br Med Bull, 103(1): 89–114

DOI PMID

92
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660

DOI PMID

93
Zhao C, Teng E M, Summers R G Jr, Ming G L, Gage F H (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26(1): 3–11

DOI PMID

94
Zhou M, Li W, Huang S, Song J, Kim J Y, Tian X, Kang E, Sano Y, Liu C, Balaji J, Wu S, Zhou Y, Zhou Y, Parivash S N, Ehninger D, He L, Song H, Ming G L, Silva A J (2013). mTOR Inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron, 77(4): 647–654

DOI PMID

Outlines

/