Metabolic regulation of adult stem cell-derived neurons
Received date: 04 Dec 2014
Accepted date: 11 Feb 2015
Published date: 06 May 2015
Copyright
The discovery of continuous generation of functional neurons throughout life has emerged as a major contributor to plasticity in defined regions of the adult mammalian brain. Work over the past decades identified cellular constituents of the distinct adult neurogenic niches as well as numerous signaling pathways, transcriptional and epigenetic regulators that exert tight control over the production of new neurons from resident stem cells. Recent studies uncovered developmental stage-specific adaptations of metabolic circuits and have provided evidence for their central regulatory function in the adult neurogenic lineage. Moreover, there is increasing evidence for a regulatory impact of a wide range of systemic metabolic factors including exercise induced metabolic changes and diet on the development of adult-born neurons. Here, we will summarize current knowledge and emerging principles underlying the metabolic control of neuronal maturation in adult neurogenesis.
Key words: metabolism; adult neurogenesis; mitochondria; diet
Ruth Beckervordersandforth , Benjamin M. Häberle , D. Chichung Lie . Metabolic regulation of adult stem cell-derived neurons[J]. Frontiers in Biology, 2015 , 10(2) : 107 -116 . DOI: 10.1007/s11515-015-1351-5
1 |
Aimone J B, Deng W, Gage F H (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70(4): 589–596
|
2 |
Alle H, Roth A, Geiger J R (2009). Energy-efficient action potentials in hippocampal mossy fibers. Science, 325(5946): 1405–1408
|
3 |
Altarejos J Y, Montminy M (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol, 12(3): 141–151
|
4 |
Alvarez J I, Katayama T, Prat A (2013). Glial influence on the blood brain barrier. Glia, 61(12): 1939–1958
|
5 |
Amiri A, Cho W, Zhou J, Birnbaum S G, Sinton C M, McKay R M, Parada L F (2012). Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci, 32(17): 5880–5890
|
6 |
Arai Y, Kojima T, Takayama M, Hirose N (2009). The metabolic syndrome, IGF-1, and insulin action. Mol Cell Endocrinol, 299(1): 124–128
|
7 |
Attardi G, Schatz G (1988). Biogenesis of mitochondria. Annu Rev Cell Biol, 4(1): 289–333
|
8 |
Attwell D, Laughlin S B (2001). An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab, 21(10): 1133–1145
|
9 |
Bélanger M, Allaman I, Magistretti P J (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab, 14(6): 724–738
|
10 |
Bertholet A M, Millet A M, Guillermin O, Daloyau M, Davezac N, Miquel M C, Belenguer P (2013). OPA1 loss of function affects in vitro neuronal maturation. Brain, 136(Pt 5): 1518–1533
|
11 |
Broughton S, Partridge L (2009). Insulin/IGF-like signalling, the central nervous system and aging. Biochem J, 418(1): 1–12
|
12 |
Cheng A, Hou Y, Mattson M P (2010). Mitochondria and neuroplasticity. ASN Neuro, 2(5): e00045
|
13 |
Cheng A, Wan R, Yang J L, Kamimura N, Son T G, Ouyang X, Luo Y, Okun E, Mattson M P (2012). Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun, 3: 1250
|
14 |
Courchet J, Lewis T L Jr, Lee S, Courchet V, Liou D Y, Aizawa S, Polleux F (2013). Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell, 153(7): 1510–1525
|
15 |
Dickey A S, Strack S (2011). PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci, 31(44): 15716–15726
|
16 |
Dietrich M O, Andrews Z B, Horvath T L (2008). Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci, 28(42): 10766–10771
|
17 |
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
|
18 |
Espósito M S, Piatti V C, Laplagne D A, Morgenstern N A, Ferrari C C, Pitossi F J, Schinder A F (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci, 25(44): 10074–10086
|
19 |
Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo C J, Palmer T D (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci, 18(10): 2803–2812
|
20 |
Fabel K, Kempermann G (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med, 10(2): 59–66
|
21 |
Fabel K, Wolf S A, Ehninger D, Babu H, Leal-Galicia P, Kempermann G (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci, 3: 50
|
22 |
Frayling C, Britton R, Dale N (2011). ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol, 589(Pt 9): 2275–2286
|
23 |
Fujioka T, Fujioka A, Duman R S (2004). Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. J Neurosci, 24(2): 319–328
|
24 |
Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
|
25 |
Ge S, Pradhan D A, Ming G L, Song H (2007). GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci, 30(1): 1–8
|
26 |
Giachino C, De Marchis S, Giampietro C, Parlato R, Perroteau I, Schütz G, Fasolo A, Peretto P (2005). cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb. J Neurosci, 25(44): 10105–10118
|
27 |
Gouazé A, Brenachot X, Rigault C, Krezymon A, Rauch C, Nédélec E, Lemoine A, Gascuel J, Bauer S, Pénicaud L, Benani A (2013). Cerebral cell renewal in adult mice controls the onset of obesity. PLoS ONE, 8(8): e72029
|
28 |
Hawley J A, Hargreaves M, Joyner M J, Zierath J R (2014). Integrative biology of exercise. Cell, 159(4): 738–749
|
29 |
Herold S, Jagasia R, Merz K, Wassmer K, Lie D C (2011). CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol Cell Neurosci, 46(1): 79–88
|
30 |
Herrero-Mendez A, Almeida A, Fernández E, Maestre C, Moncada S, Bolaños J P (2009). The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol, 11(6): 747–752
|
31 |
Itoh Y, Esaki T, Shimoji K, Cook M, Law M J, Kaufman E, Sokoloff L (2003). Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA, 100(8): 4879–4884
|
32 |
Jagasia R, Steib K, Englberger E, Herold S, Faus-Kessler T, Saxe M, Gage F H, Song H, Lie D C (2009). GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci, 29(25): 7966–7977
|
33 |
Kheirbek M A, Klemenhagen K C, Sahay A, Hen R (2012). Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci, 15(12): 1613–1620
|
34 |
Kim D Y, Rhee I, Paik J (2014). Metabolic circuits in neural stem cells. Cell Mol Life Sci, 71(21): 4221–4241
|
35 |
Kim J Y, Duan X, Liu C Y, Jang M H, Guo J U, Pow-anpongkul N, Kang E, Song H, Ming G L (2009). DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron, 63(6): 761–773
|
36 |
Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051–1064
|
37 |
Kivelä R, Bry M, Robciuc M R, Räsänen M, Taavitsainen M, Silvola J M, Saraste A, Hulmi J J, Anisimov A, Mäyränpää M I, Lindeman J H, Eklund L, Hellberg S, Hlushchuk R, Zhuang Z W, Simons M, Djonov V, Knuuti J, Mervaala E, Alitalo K (2014). VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol Med, 6(3): 307–321
|
38 |
Klempin F, Beis D, Mosienko V, Kempermann G, Bader M, Alenina N (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. J Neurosci, 33(19): 8270–8275
|
39 |
Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230
|
40 |
Kokoeva M V, Yin H, Flier J S (2005). Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science, 310(5748): 679–683
|
41 |
Kokoeva M V, Yin H, Flier J S (2007). Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol, 505(2): 209–220
|
42 |
Kumar V B, Binu S, Soumya S J, K H, Sudhakaran P R (2014). Regulation of vascular endothelial growth factor by metabolic context of the cell. Glycoconj J, 31(6-7): 427–434
|
43 |
Lee D A, Bedont J L, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012). Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci, 15(5): 700–702
|
44 |
Lee D A, Blackshaw S (2012). Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci, 30(8): 615–621
|
45 |
Lee D A, Yoo S, Pak T, Salvatierra J, Velarde E, Aja S, Blackshaw S (2014). Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front Neurosci, 8: 157
|
46 |
Li Z, Jo J, Jia J M, Lo S C, Whitcomb D J, Jiao S, Cho K, Sheng M (2010). Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell, 141(5): 859–871
|
47 |
Li Z, Okamoto K, Hayashi Y, Sheng M (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell, 119(6): 873–887
|
48 |
Lipton J O, Sahin M (2014). The neurology of mTOR. Neuron, 84(2): 275–291
|
49 |
MacAskill A F, Atkin T A, Kittler J T (2010). Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci, 32(2): 231–240
|
50 |
Macaskill A F, Rinholm J E, Twelvetrees A E, Arancibia-Carcamo I L, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler J T (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron, 61(4): 541–555
|
51 |
Marín-Burgin A, Mongiat L A, Pardi M B, Schinder A F (2012). Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science, 335(6073): 1238–1242
|
52 |
Mattson M P (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab, 16(6): 706–722
|
53 |
Merz K, Herold S, Lie D C (2011). CREB in adult neurogenesis—master and partner in the development of adult-born neurons? Eur J Neurosci, 33(6): 1078–1086
|
54 |
Mihaylova M M, Sabatini D M, Yilmaz O H (2014). Dietary and metabolic control of stem cell function in physiology and cancer. Cell Stem Cell, 14(3): 292–305
|
55 |
Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702
|
56 |
Mishra P, Chan D C (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol, 15(10): 634–646
|
57 |
Nakagawa S, Kim J E, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman R S (2002). Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci, 22(22): 9868–9876
|
58 |
Orellana J A, Sáez P J, Cortés-Campos C, Elizondo R J, Shoji K F, Contreras-Duarte S, Figueroa V, Velarde V, Jiang J X, Nualart F, Sáez J C, García M A (2012). Glucose increases intracellular free Ca2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia, 60(1): 53–68
|
59 |
Oruganty-Das A, Ng T, Udagawa T, Goh E L, Richter J D (2012). Translational control of mitochondrial energy production mediates neuron morphogenesis. Cell Metab, 16(6): 789–800
|
60 |
Osman C, Voelker D R, Langer T (2011). Making heads or tails of phospholipids in mitochondria. J Cell Biol, 192(1): 7–16
|
61 |
Pellerin L, Magistretti P J (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA, 91(22): 10625–10629
|
62 |
Pereira A C, Huddleston D E, Brickman A M, Sosunov A A, Hen R, McKhann G M, Sloan R, Gage F H, Brown T R, Small S A (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA, 104(13): 5638–5643
|
63 |
Piatti V C, Davies-Sala M G, Espósito M S, Mongiat L A, Trinchero M F, Schinder A F (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci, 31(21): 7715–7728
|
64 |
Pieper A A, Xie S, Capota E, Estill S J, Zhong J, Long J M, Becker G L, Huntington P, Goldman S E, Shen C H, Capota M, Britt J K, Kotti T, Ure K, Brat D J, Williams N S, MacMillan K S, Naidoo J, Melito L, Hsieh J, De Brabander J, Ready J M, McKnight S L (2010). Discovery of a proneurogenic, neuroprotective chemical. Cell, 142(1): 39–51
|
65 |
Pierce A A, Xu A W (2010). De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci, 30(2): 723–730
|
66 |
Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolaños J P (2012). Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ, 19(10): 1582–1589
|
67 |
Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science, 322(5907): 1551–1555
|
68 |
Sahay A, Wilson D A, Hen R (2011). Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron, 70(4): 582–588
|
69 |
Schmidt-Hieber C, Jonas P, Bischofberger J (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429(6988): 184–187
|
70 |
Schousboe A, Scafidi S, Bak L K, Waagepetersen H S, McKenna M C (2014). Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol, 11: 13–30
|
71 |
Sousa-Ferreira L, de Almeida L P, Cavadas C (2014). Role of hypothalamic neurogenesis in feeding regulation. Trends Endocrinol Metab, 25(2): 80–88
|
72 |
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
|
73 |
Spiegelman B M (2007). Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp, 287: 60–63, discussion 63–69
|
74 |
Steib K, Schäffner I, Jagasia R, Ebert B, Lie D C (2014). Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci, 34(19): 6624–6633
|
75 |
Steketee M B, Moysidis S N, Weinstein J E, Kreymerman A, Silva J P, Iqbal S, Goldberg J L (2012). Mitochondrial dynamics regulate growth cone motility, guidance, and neurite growth rate in perinatal retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci, 53(11): 7402–7411
|
76 |
Stocca G, Schmidt-Hieber C, Bischofberger J (2008). Differential dendritic Ca2+ signalling in young and mature hippocampal granule cells. J Physiol, 586(16): 3795–3811
|
77 |
Stoll E A, Cheung W, Mikheev A M, Sweet I R, Bielas J H, Zhang J, Rostomily R C, Horner P J (2011). Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. J Biol Chem, 286(44): 38592–38601
|
78 |
Stranahan A M, Arumugam T V, Cutler R G, Lee K, Egan J M, Mattson M P (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci, 11(3): 309–317
|
79 |
Sun G J, Sailor K A, Mahmood Q A, Chavali N, Christian K M, Song H, Ming G L (2013). Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. J Neurosci, 33(28): 11400–11411
|
80 |
Tatsuta T, Langer T (2008). Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J, 27(2): 306–314
|
81 |
Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907
|
82 |
Trejo J L, Carro E, Torres-Aleman I (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci, 21(5): 1628–1634
|
83 |
van Praag H (2009). Exercise and the brain: something to chew on. Trends Neurosci, 32(5): 283–290
|
84 |
van Praag H, Kempermann G, Gage F H (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 2(3): 266–270
|
85 |
van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030–1034
|
86 |
Wang X, Schwarz T L (2009). The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell, 136(1): 163–174
|
87 |
Ward P S, Thompson C B (2012). Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 21(3): 297–308
|
88 |
Winner B, Kohl Z, Gage F H (2011). Neurodegenerative disease and adult neurogenesis. Eur J Neurosci, 33(6): 1139–1151
|
89 |
Wu L E, Meoli C C, Mangiafico S P, Fazakerley D J, Cogger V C, Mohamad M, Pant H, Kang M J, Powter E, Burchfield J G, Xirouchaki C E, Mikolaizak A S, Stöckli J, Kolumam G, van Bruggen N, Gamble J R, Le Couteur D G, Cooney G J, Andrikopoulos S, James D E (2014). Systemic VEGF-A neutralization ameliorates diet-induced metabolic dysfunction. Diabetes, 63(8): 2656–2667
|
90 |
Yeo H, Lyssiotis C A, Zhang Y, Ying H, Asara J M, Cantley L C, Paik J H (2013). FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J, 32(19): 2589–2602
|
91 |
Zainuddin M S, Thuret S (2012). Nutrition, adult hippocampal neurogenesis and mental health. Br Med Bull, 103(1): 89–114
|
92 |
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
|
93 |
Zhao C, Teng E M, Summers R G Jr, Ming G L, Gage F H (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26(1): 3–11
|
94 |
Zhou M, Li W, Huang S, Song J, Kim J Y, Tian X, Kang E, Sano Y, Liu C, Balaji J, Wu S, Zhou Y, Zhou Y, Parivash S N, Ehninger D, He L, Song H, Ming G L, Silva A J (2013). mTOR Inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron, 77(4): 647–654
|
/
〈 | 〉 |