Metabolic regulation of adult stem cell-derived neurons
Ruth Beckervordersandforth, Benjamin M. Häberle, D. Chichung Lie
Metabolic regulation of adult stem cell-derived neurons
The discovery of continuous generation of functional neurons throughout life has emerged as a major contributor to plasticity in defined regions of the adult mammalian brain. Work over the past decades identified cellular constituents of the distinct adult neurogenic niches as well as numerous signaling pathways, transcriptional and epigenetic regulators that exert tight control over the production of new neurons from resident stem cells. Recent studies uncovered developmental stage-specific adaptations of metabolic circuits and have provided evidence for their central regulatory function in the adult neurogenic lineage. Moreover, there is increasing evidence for a regulatory impact of a wide range of systemic metabolic factors including exercise induced metabolic changes and diet on the development of adult-born neurons. Here, we will summarize current knowledge and emerging principles underlying the metabolic control of neuronal maturation in adult neurogenesis.
metabolism / adult neurogenesis / mitochondria / diet
[1] |
Aimone J B, Deng W, Gage F H (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70(4): 589–596
CrossRef
Pubmed
Google scholar
|
[2] |
Alle H, Roth A, Geiger J R (2009). Energy-efficient action potentials in hippocampal mossy fibers. Science, 325(5946): 1405–1408
CrossRef
Pubmed
Google scholar
|
[3] |
Altarejos J Y, Montminy M (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol, 12(3): 141–151
CrossRef
Pubmed
Google scholar
|
[4] |
Alvarez J I, Katayama T, Prat A (2013). Glial influence on the blood brain barrier. Glia, 61(12): 1939–1958
CrossRef
Pubmed
Google scholar
|
[5] |
Amiri A, Cho W, Zhou J, Birnbaum S G, Sinton C M, McKay R M, Parada L F (2012). Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci, 32(17): 5880–5890
CrossRef
Pubmed
Google scholar
|
[6] |
Arai Y, Kojima T, Takayama M, Hirose N (2009). The metabolic syndrome, IGF-1, and insulin action. Mol Cell Endocrinol, 299(1): 124–128
CrossRef
Pubmed
Google scholar
|
[7] |
Attardi G, Schatz G (1988). Biogenesis of mitochondria. Annu Rev Cell Biol, 4(1): 289–333
CrossRef
Pubmed
Google scholar
|
[8] |
Attwell D, Laughlin S B (2001). An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab, 21(10): 1133–1145
CrossRef
Pubmed
Google scholar
|
[9] |
Bélanger M, Allaman I, Magistretti P J (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab, 14(6): 724–738
CrossRef
Pubmed
Google scholar
|
[10] |
Bertholet A M, Millet A M, Guillermin O, Daloyau M, Davezac N, Miquel M C, Belenguer P (2013). OPA1 loss of function affects in vitro neuronal maturation. Brain, 136(Pt 5): 1518–1533
CrossRef
Pubmed
Google scholar
|
[11] |
Broughton S, Partridge L (2009). Insulin/IGF-like signalling, the central nervous system and aging. Biochem J, 418(1): 1–12
CrossRef
Pubmed
Google scholar
|
[12] |
Cheng A, Hou Y, Mattson M P (2010). Mitochondria and neuroplasticity. ASN Neuro, 2(5): e00045
CrossRef
Pubmed
Google scholar
|
[13] |
Cheng A, Wan R, Yang J L, Kamimura N, Son T G, Ouyang X, Luo Y, Okun E, Mattson M P (2012). Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun, 3: 1250
CrossRef
Pubmed
Google scholar
|
[14] |
Courchet J, Lewis T L Jr, Lee S, Courchet V, Liou D Y, Aizawa S, Polleux F (2013). Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell, 153(7): 1510–1525
CrossRef
Pubmed
Google scholar
|
[15] |
Dickey A S, Strack S (2011). PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci, 31(44): 15716–15726
CrossRef
Pubmed
Google scholar
|
[16] |
Dietrich M O, Andrews Z B, Horvath T L (2008). Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci, 28(42): 10766–10771
CrossRef
Pubmed
Google scholar
|
[17] |
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
CrossRef
Pubmed
Google scholar
|
[18] |
Espósito M S, Piatti V C, Laplagne D A, Morgenstern N A, Ferrari C C, Pitossi F J, Schinder A F (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci, 25(44): 10074–10086
CrossRef
Pubmed
Google scholar
|
[19] |
Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo C J, Palmer T D (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci, 18(10): 2803–2812
CrossRef
Pubmed
Google scholar
|
[20] |
Fabel K, Kempermann G (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med, 10(2): 59–66
CrossRef
Pubmed
Google scholar
|
[21] |
Fabel K, Wolf S A, Ehninger D, Babu H, Leal-Galicia P, Kempermann G (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci, 3: 50
Pubmed
|
[22] |
Frayling C, Britton R, Dale N (2011). ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol, 589(Pt 9): 2275–2286
CrossRef
Pubmed
Google scholar
|
[23] |
Fujioka T, Fujioka A, Duman R S (2004). Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. J Neurosci, 24(2): 319–328
CrossRef
Pubmed
Google scholar
|
[24] |
Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
CrossRef
Pubmed
Google scholar
|
[25] |
Ge S, Pradhan D A, Ming G L, Song H (2007). GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci, 30(1): 1–8
CrossRef
Pubmed
Google scholar
|
[26] |
Giachino C, De Marchis S, Giampietro C, Parlato R, Perroteau I, Schütz G, Fasolo A, Peretto P (2005). cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb. J Neurosci, 25(44): 10105–10118
CrossRef
Pubmed
Google scholar
|
[27] |
Gouazé A, Brenachot X, Rigault C, Krezymon A, Rauch C, Nédélec E, Lemoine A, Gascuel J, Bauer S, Pénicaud L, Benani A (2013). Cerebral cell renewal in adult mice controls the onset of obesity. PLoS ONE, 8(8): e72029
CrossRef
Pubmed
Google scholar
|
[28] |
Hawley J A, Hargreaves M, Joyner M J, Zierath J R (2014). Integrative biology of exercise. Cell, 159(4): 738–749
CrossRef
Pubmed
Google scholar
|
[29] |
Herold S, Jagasia R, Merz K, Wassmer K, Lie D C (2011). CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol Cell Neurosci, 46(1): 79–88
CrossRef
Pubmed
Google scholar
|
[30] |
Herrero-Mendez A, Almeida A, Fernández E, Maestre C, Moncada S, Bolaños J P (2009). The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol, 11(6): 747–752
CrossRef
Pubmed
Google scholar
|
[31] |
Itoh Y, Esaki T, Shimoji K, Cook M, Law M J, Kaufman E, Sokoloff L (2003). Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA, 100(8): 4879–4884
CrossRef
Pubmed
Google scholar
|
[32] |
Jagasia R, Steib K, Englberger E, Herold S, Faus-Kessler T, Saxe M, Gage F H, Song H, Lie D C (2009). GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci, 29(25): 7966–7977
CrossRef
Pubmed
Google scholar
|
[33] |
Kheirbek M A, Klemenhagen K C, Sahay A, Hen R (2012). Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci, 15(12): 1613–1620
CrossRef
Pubmed
Google scholar
|
[34] |
Kim D Y, Rhee I, Paik J (2014). Metabolic circuits in neural stem cells. Cell Mol Life Sci, 71(21): 4221–4241
CrossRef
Pubmed
Google scholar
|
[35] |
Kim J Y, Duan X, Liu C Y, Jang M H, Guo J U, Pow-anpongkul N, Kang E, Song H, Ming G L (2009). DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron, 63(6): 761–773
CrossRef
Pubmed
Google scholar
|
[36] |
Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051–1064
CrossRef
Pubmed
Google scholar
|
[37] |
Kivelä R, Bry M, Robciuc M R, Räsänen M, Taavitsainen M, Silvola J M, Saraste A, Hulmi J J, Anisimov A, Mäyränpää M I, Lindeman J H, Eklund L, Hellberg S, Hlushchuk R, Zhuang Z W, Simons M, Djonov V, Knuuti J, Mervaala E, Alitalo K (2014). VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol Med, 6(3): 307–321
Pubmed
|
[38] |
Klempin F, Beis D, Mosienko V, Kempermann G, Bader M, Alenina N (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. J Neurosci, 33(19): 8270–8275
CrossRef
Pubmed
Google scholar
|
[39] |
Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230
CrossRef
Pubmed
Google scholar
|
[40] |
Kokoeva M V, Yin H, Flier J S (2005). Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science, 310(5748): 679–683
CrossRef
Pubmed
Google scholar
|
[41] |
Kokoeva M V, Yin H, Flier J S (2007). Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol, 505(2): 209–220
CrossRef
Pubmed
Google scholar
|
[42] |
Kumar V B, Binu S, Soumya S J, K H, Sudhakaran P R (2014). Regulation of vascular endothelial growth factor by metabolic context of the cell. Glycoconj J, 31(6-7): 427–434
CrossRef
Pubmed
Google scholar
|
[43] |
Lee D A, Bedont J L, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012). Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci, 15(5): 700–702
CrossRef
Pubmed
Google scholar
|
[44] |
Lee D A, Blackshaw S (2012). Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci, 30(8): 615–621
CrossRef
Pubmed
Google scholar
|
[45] |
Lee D A, Yoo S, Pak T, Salvatierra J, Velarde E, Aja S, Blackshaw S (2014). Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front Neurosci, 8: 157
CrossRef
Pubmed
Google scholar
|
[46] |
Li Z, Jo J, Jia J M, Lo S C, Whitcomb D J, Jiao S, Cho K, Sheng M (2010). Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell, 141(5): 859–871
CrossRef
Pubmed
Google scholar
|
[47] |
Li Z, Okamoto K, Hayashi Y, Sheng M (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell, 119(6): 873–887
CrossRef
Pubmed
Google scholar
|
[48] |
Lipton J O, Sahin M (2014). The neurology of mTOR. Neuron, 84(2): 275–291
CrossRef
Pubmed
Google scholar
|
[49] |
MacAskill A F, Atkin T A, Kittler J T (2010). Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci, 32(2): 231–240
CrossRef
Pubmed
Google scholar
|
[50] |
Macaskill A F, Rinholm J E, Twelvetrees A E, Arancibia-Carcamo I L, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler J T (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron, 61(4): 541–555
CrossRef
Pubmed
Google scholar
|
[51] |
Marín-Burgin A, Mongiat L A, Pardi M B, Schinder A F (2012). Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science, 335(6073): 1238–1242
CrossRef
Pubmed
Google scholar
|
[52] |
Mattson M P (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab, 16(6): 706–722
CrossRef
Pubmed
Google scholar
|
[53] |
Merz K, Herold S, Lie D C (2011). CREB in adult neurogenesis—master and partner in the development of adult-born neurons? Eur J Neurosci, 33(6): 1078–1086
CrossRef
Pubmed
Google scholar
|
[54] |
Mihaylova M M, Sabatini D M, Yilmaz O H (2014). Dietary and metabolic control of stem cell function in physiology and cancer. Cell Stem Cell, 14(3): 292–305
CrossRef
Pubmed
Google scholar
|
[55] |
Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702
CrossRef
Pubmed
Google scholar
|
[56] |
Mishra P, Chan D C (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol, 15(10): 634–646
CrossRef
Pubmed
Google scholar
|
[57] |
Nakagawa S, Kim J E, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman R S (2002). Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci, 22(22): 9868–9876
Pubmed
|
[58] |
Orellana J A, Sáez P J, Cortés-Campos C, Elizondo R J, Shoji K F, Contreras-Duarte S, Figueroa V, Velarde V, Jiang J X, Nualart F, Sáez J C, García M A (2012). Glucose increases intracellular free Ca2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia, 60(1): 53–68
CrossRef
Pubmed
Google scholar
|
[59] |
Oruganty-Das A, Ng T, Udagawa T, Goh E L, Richter J D (2012). Translational control of mitochondrial energy production mediates neuron morphogenesis. Cell Metab, 16(6): 789–800
CrossRef
Pubmed
Google scholar
|
[60] |
Osman C, Voelker D R, Langer T (2011). Making heads or tails of phospholipids in mitochondria. J Cell Biol, 192(1): 7–16
CrossRef
Pubmed
Google scholar
|
[61] |
Pellerin L, Magistretti P J (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA, 91(22): 10625–10629
CrossRef
Pubmed
Google scholar
|
[62] |
Pereira A C, Huddleston D E, Brickman A M, Sosunov A A, Hen R, McKhann G M, Sloan R, Gage F H, Brown T R, Small S A (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA, 104(13): 5638–5643
CrossRef
Pubmed
Google scholar
|
[63] |
Piatti V C, Davies-Sala M G, Espósito M S, Mongiat L A, Trinchero M F, Schinder A F (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci, 31(21): 7715–7728
CrossRef
Pubmed
Google scholar
|
[64] |
Pieper A A, Xie S, Capota E, Estill S J, Zhong J, Long J M, Becker G L, Huntington P, Goldman S E, Shen C H, Capota M, Britt J K, Kotti T, Ure K, Brat D J, Williams N S, MacMillan K S, Naidoo J, Melito L, Hsieh J, De Brabander J, Ready J M, McKnight S L (2010). Discovery of a proneurogenic, neuroprotective chemical. Cell, 142(1): 39–51
CrossRef
Pubmed
Google scholar
|
[65] |
Pierce A A, Xu A W (2010). De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci, 30(2): 723–730
CrossRef
Pubmed
Google scholar
|
[66] |
Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolaños J P (2012). Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ, 19(10): 1582–1589
CrossRef
Pubmed
Google scholar
|
[67] |
Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science, 322(5907): 1551–1555
CrossRef
Pubmed
Google scholar
|
[68] |
Sahay A, Wilson D A, Hen R (2011). Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron, 70(4): 582–588
CrossRef
Pubmed
Google scholar
|
[69] |
Schmidt-Hieber C, Jonas P, Bischofberger J (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429(6988): 184–187
CrossRef
Pubmed
Google scholar
|
[70] |
Schousboe A, Scafidi S, Bak L K, Waagepetersen H S, McKenna M C (2014). Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol, 11: 13–30
CrossRef
Pubmed
Google scholar
|
[71] |
Sousa-Ferreira L, de Almeida L P, Cavadas C (2014). Role of hypothalamic neurogenesis in feeding regulation. Trends Endocrinol Metab, 25(2): 80–88
CrossRef
Pubmed
Google scholar
|
[72] |
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
CrossRef
Pubmed
Google scholar
|
[73] |
Spiegelman B M (2007). Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp, 287: 60–63, discussion 63–69
CrossRef
Pubmed
Google scholar
|
[74] |
Steib K, Schäffner I, Jagasia R, Ebert B, Lie D C (2014). Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci, 34(19): 6624–6633
CrossRef
Pubmed
Google scholar
|
[75] |
Steketee M B, Moysidis S N, Weinstein J E, Kreymerman A, Silva J P, Iqbal S, Goldberg J L (2012). Mitochondrial dynamics regulate growth cone motility, guidance, and neurite growth rate in perinatal retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci, 53(11): 7402–7411
CrossRef
Pubmed
Google scholar
|
[76] |
Stocca G, Schmidt-Hieber C, Bischofberger J (2008). Differential dendritic Ca2+ signalling in young and mature hippocampal granule cells. J Physiol, 586(16): 3795–3811
CrossRef
Pubmed
Google scholar
|
[77] |
Stoll E A, Cheung W, Mikheev A M, Sweet I R, Bielas J H, Zhang J, Rostomily R C, Horner P J (2011). Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. J Biol Chem, 286(44): 38592–38601
CrossRef
Pubmed
Google scholar
|
[78] |
Stranahan A M, Arumugam T V, Cutler R G, Lee K, Egan J M, Mattson M P (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci, 11(3): 309–317
CrossRef
Pubmed
Google scholar
|
[79] |
Sun G J, Sailor K A, Mahmood Q A, Chavali N, Christian K M, Song H, Ming G L (2013). Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. J Neurosci, 33(28): 11400–11411
CrossRef
Pubmed
Google scholar
|
[80] |
Tatsuta T, Langer T (2008). Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J, 27(2): 306–314
CrossRef
Pubmed
Google scholar
|
[81] |
Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907
CrossRef
Pubmed
Google scholar
|
[82] |
Trejo J L, Carro E, Torres-Aleman I (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci, 21(5): 1628–1634
Pubmed
|
[83] |
van Praag H (2009). Exercise and the brain: something to chew on. Trends Neurosci, 32(5): 283–290
CrossRef
Pubmed
Google scholar
|
[84] |
van Praag H, Kempermann G, Gage F H (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 2(3): 266–270
CrossRef
Pubmed
Google scholar
|
[85] |
van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030–1034
CrossRef
Pubmed
Google scholar
|
[86] |
Wang X, Schwarz T L (2009). The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell, 136(1): 163–174
CrossRef
Pubmed
Google scholar
|
[87] |
Ward P S, Thompson C B (2012). Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 21(3): 297–308
CrossRef
Pubmed
Google scholar
|
[88] |
Winner B, Kohl Z, Gage F H (2011). Neurodegenerative disease and adult neurogenesis. Eur J Neurosci, 33(6): 1139–1151
CrossRef
Pubmed
Google scholar
|
[89] |
Wu L E, Meoli C C, Mangiafico S P, Fazakerley D J, Cogger V C, Mohamad M, Pant H, Kang M J, Powter E, Burchfield J G, Xirouchaki C E, Mikolaizak A S, Stöckli J, Kolumam G, van Bruggen N, Gamble J R, Le Couteur D G, Cooney G J, Andrikopoulos S, James D E (2014). Systemic VEGF-A neutralization ameliorates diet-induced metabolic dysfunction. Diabetes, 63(8): 2656–2667
CrossRef
Pubmed
Google scholar
|
[90] |
Yeo H, Lyssiotis C A, Zhang Y, Ying H, Asara J M, Cantley L C, Paik J H (2013). FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J, 32(19): 2589–2602
CrossRef
Pubmed
Google scholar
|
[91] |
Zainuddin M S, Thuret S (2012). Nutrition, adult hippocampal neurogenesis and mental health. Br Med Bull, 103(1): 89–114
CrossRef
Pubmed
Google scholar
|
[92] |
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
CrossRef
Pubmed
Google scholar
|
[93] |
Zhao C, Teng E M, Summers R G Jr, Ming G L, Gage F H (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26(1): 3–11
CrossRef
Pubmed
Google scholar
|
[94] |
Zhou M, Li W, Huang S, Song J, Kim J Y, Tian X, Kang E, Sano Y, Liu C, Balaji J, Wu S, Zhou Y, Zhou Y, Parivash S N, Ehninger D, He L, Song H, Ming G L, Silva A J (2013). mTOR Inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron, 77(4): 647–654
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |