REVIEW

High on food: the interaction between the neural circuits for feeding and for reward

  • Jing-Jing Liu 1 ,
  • Diptendu Mukherjee 2,3 ,
  • Doron Haritan 2,3 ,
  • Bogna Ignatowska-Jankowska 2,3 ,
  • Ji Liu 1 ,
  • Ami Citri , 2,3 ,
  • Zhiping P. Pang , 1
Expand
  • 1. Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
  • 2. Department of Biological Chemistry, Institute for Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
  • 3. The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Received date: 01 Nov 2014

Accepted date: 09 Jan 2015

Published date: 06 May 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Hunger, mostly initiated by a deficiency in energy, induces food seeking and intake. However, the drive toward food is not only regulated by physiological needs, but is motivated by the pleasure derived from ingestion of food, in particular palatable foods. Therefore, feeding is viewed as an adaptive motivated behavior that involves integrated communication between homeostatic feeding circuits and reward circuits. The initiation and termination of a feeding episode are instructed by a variety of neuronal signals, and maladaptive plasticity in almost any component of the network may lead to the development of pathological eating disorders. In this review we will summarize the latest understanding of how the feeding circuits and reward circuits in the brain interact. We will emphasize communication between the hypothalamus and the mesolimbic dopamine system and highlight complexities, discrepancies, open questions and future directions for the field.

Cite this article

Jing-Jing Liu , Diptendu Mukherjee , Doron Haritan , Bogna Ignatowska-Jankowska , Ji Liu , Ami Citri , Zhiping P. Pang . High on food: the interaction between the neural circuits for feeding and for reward[J]. Frontiers in Biology, 2015 , 10(2) : 165 -176 . DOI: 10.1007/s11515-015-1348-0

Acknowledgements

The authors want to thank the generous support from the US-Israel Binational Science Foundation (BSF; grant #2011266).
Jing-Jing Liu, Diptendu Mukherjee, Doron Haritan, Bogna Ignatowska-Jankowska, Ji Liu, Ami Citri and Zhiping P. Pang declare that they have no conflict of interests. This article does not contain any studies with human or animal subjects performed by any of the authors.
1
Anand B K, Brobeck J R (1951). Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med, 77(2): 323–324

DOI PMID

2
Atasoy D, Aponte Y, Su H H, Sternson S M (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci, 28: 7025–7030

3
Atasoy D, Betley J N, Su H H, Sternson S M (2012). Deconstruction of a neural circuit for hunger. Nature, 488(7410): 172–177

DOI PMID

4
Atrens D M, Williams M P, Brady C J, Hunt G E (1982). Energy balance and hypothalamic self-stimulation. Behav Brain Res, 5(2): 131–142

DOI PMID

5
Avena N M, Rada P, Hoebel B G (2008). Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev, 32(1): 20–39

DOI PMID

6
Baicy K, London E D, Monterosso J, Wong M L, Delibasi T, Sharma A, Licinio J (2007). Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proc Natl Acad Sci USA, 104(46): 18276–18279

DOI PMID

7
Belgardt B F, Okamura T, Brüning J C (2009). Hormone and glucose signalling in POMC and AgRP neurons. J Physiol, 587(Pt 22): 5305–5314

DOI PMID

8
Berridge K C (2009). ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav, 97(5): 537–550

DOI PMID

9
Betley J N, Cao Z F, Ritola K D, Sternson S M (2013). Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell, 155(6): 1337–1350

DOI PMID

10
Bittencourt J C, Presse F, Arias C, Peto C, Vaughan J, Nahon J L, Vale W, Sawchenko P E (1992). The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol, 319(2): 218–245

DOI PMID

11
Blouet C, Schwartz G J (2010). Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res, 209(1): 1–12

DOI PMID

12
Borgland S L, Ungless M A, Bonci A (2010). Convergent actions of orexin/hypocretin and CRF on dopamine neurons: Emerging players in addiction. Brain Res, 1314: 139–144

DOI PMID

13
Boules M, Cusack B, Zhao L, Fauq A, McCormick D J, Richelson E (2000). A novel neurotensin peptide analog given extracranially decreases food intake and weight in rodents. Brain Res, 865(1): 35–44

DOI PMID

14
Cardinal R N, Parkinson J A, Hall J, Everitt B J (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev, 26(3): 321–352

DOI PMID

15
Carroll M E, France C P, Meisch R A (1979). Food deprivation increases oral and intravenous drug intake in rats. Science, 205(4403): 319–321

DOI PMID

16
Chung S, Hopf F W, Nagasaki H, Li C Y, Belluzzi J D, Bonci A, Civelli O (2009). The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci USA, 106(16): 6772–6777

DOI PMID

17
Ciriello J, McMurray J C, Babic T, de Oliveira C V (2003). Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Res, 991(1–2): 133–141

DOI PMID

18
Citri A, Malenka R C (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33(1): 18–41

DOI PMID

19
Coll A P, Farooqi I S, O’Rahilly S (2007). The hormonal control of food intake. Cell, 129(2): 251–262

DOI PMID

20
Coons E E, Cruce J A (1968). Lateral hypothalamus: food current intensity in maintaining self-stimulation of hunger. Science, 159(3819): 1117–1119

DOI PMID

21
Cota D, Barrera J G, Seeley R J (2006). Leptin in energy balance and reward: two faces of the same coin? Neuron, 51(6): 678–680

DOI PMID

22
Davis C, Strachan S, Berkson M (2004). Sensitivity to reward: implications for overeating and overweight. Appetite, 42(2): 131–138

DOI PMID

23
Dietrich M O, Horvath T L (2009). Feeding signals and brain circuitry. Eur J Neurosci, 30(9): 1688–1696

DOI PMID

24
Domingos A I, Vaynshteyn J, Voss H U, Ren X, Gradinaru V, Zang F, Deisseroth K, de Araujo I E, Friedman J (2011). Leptin regulates the reward value of nutrient. Nat Neurosci, 14(12): 1562–1568

DOI PMID

25
Dossat A M, Diaz R, Gallo L, Panagos A, Kay K, Williams D L (2013). Nucleus accumbens GLP-1 receptors influence meal size and palatability. Am J Physiol Endocrinol Metab, 304(12): E1314–E1320

DOI PMID

26
Dossat A M, Lilly N, Kay K, Williams D L (2011). Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci, 31(41): 14453–14457

DOI PMID

27
Dube M G, Kalra S P, Kalra P S (1999). Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res, 842(2): 473–477

DOI PMID

28
Everson S A, Maty S C, Lynch J W, Kaplan G A (2002). Epidemiologic evidence for the relation between socioeconomic status and depression, obesity, and diabetes. J Psychosom Res, 53(4): 891–895

DOI PMID

29
Fadel J, Deutch A Y (2002). Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience, 111(2): 379–387

DOI PMID

30
Farooqi I S, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher P C (2007). Leptin regulates striatal regions and human eating behavior. Science, 317(5843): 1355

DOI PMID

31
Feifel D, Goldenberg J, Melendez G, Shilling P D (2010). The acute and subchronic effects of a brain-penetrating, neurotensin-1 receptor agonist on feeding, body weight and temperature. Neuropharmacology, 58(1): 195–198

DOI PMID

32
Figlewicz D P (2003). Insulin, food intake, and reward. Semin Clin Neuropsychiatry, 8(2): 82–93

DOI PMID

33
Frank R A, Preshaw R L, Stutz R M, Valenstein E S (1982). Lateral hypothalamic stimulation: stimulus-bound eating and self-deprivation. Physiol Behav, 29(1): 17–21

DOI PMID

34
Fulton S, Pissios P, Manchon R P, Stiles L, Frank L, Pothos E N, Maratos-Flier E, Flier J S (2006). Leptin regulation of the mesoaccumbens dopamine pathway. Neuron, 51(6): 811–822

DOI PMID

35
Fulton S, Woodside B, Shizgal P (2000). Modulation of brain reward circuitry by leptin. Science, 287(5450): 125–128

DOI PMID

36
Geiger B M, Haburcak M, Avena N M, Moyer M C, Hoebel B G, Pothos E N (2009). Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience, 159(4): 1193–1199

DOI PMID

37
Georgescu D, Sears R M, Hommel J D, Barrot M, Bolanos C A, Marsh D J, Bednarek M A, Bibb J A, Maratos-Flier E, Nestler E J, DiLeone R J (2005). The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci, 25: 2933–2940

38
Goforth P B, Leinninger G M, Patterson C M, Satin L S, Myers M G Jr. (2014) Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J Neurosci, 34: 11405–11415

39
Goldstone A P (2006). The hypothalamus, hormones, and hunger: alterations in human obesity and illness. Prog Brain Res, 153: 57–73

DOI PMID

40
Gutierrez R, Lobo M K, Zhang F, de Lecea L (2011). Neural integration of reward, arousal, and feeding: recruitment of VTA, lateral hypothalamus, and ventral striatal neurons. IUBMB Life, 63(10): 824–830

DOI PMID

41
Hahn J D, Swanson L W (2010). Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Brain Res Rev, 64(1): 14–103

DOI PMID

42
Hahn J D, Swanson L W (2012). Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. J Comp Neurol, 520(9): 1831–1890

DOI PMID

43
Håkansson M, de Lecea L, Sutcliffe J G, Yanagisawa M, Meister B (1999). Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus. J Neuroendocrinol, 11(8): 653–663

DOI PMID

44
Haltia L T, Rinne J O, Merisaari H, Maguire R P, Savontaus E, Helin S, Någren K, Kaasinen V (2007). Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse, 61(9): 748–756

DOI PMID

45
Hansen S, Stanfield E J, Everitt B J (1981). The effects of lesions of lateral tegmental noradrenergic neurons on components of sexual behavior and pseudopregnancy in female rats. Neuroscience, 6(6): 1105–1117

DOI PMID

46
Harthoorn L F, Sañé A, Nethe M, Van Heerikhuize J J (2005). Multi-transcriptional profiling of melanin-concentrating hormone and orexin-containing neurons. Cell Mol Neurobiol, 25(8): 1209–1223

DOI PMID

47
Hoebel B G, Teitelbaum P (1962). Hypothalamic control of feeding and self-stimulation. Science, 135(3501): 375–377

DOI PMID

48
Hommel J D, Trinko R, Sears R M, Georgescu D, Liu Z W, Gao X B, Thurmon J J, Marinelli M, DiLeone R J (2006). Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron, 51(6): 801–810

DOI PMID

49
Horjales-Araujo E, Hellysaz A, Broberger C (2014). Lateral hypothalamic thyrotropin-releasing hormone neurons: distribution and relationship to histochemically defined cell populations in the rat. Neuroscience, 277: 87–102

DOI PMID

50
Horvath T L (2005). The hardship of obesity: a soft-wired hypothalamus. Nat Neurosci, 8(5): 561–565

DOI PMID

51
Ishiwari K, Weber S M, Mingote S, Correa M, Salamone J D (2004). Accumbens dopamine and the regulation of effort in food-seeking behavior: modulation of work output by different ratio or force requirements. Behav Brain Res, 151(1–2): 83–91

DOI PMID

52
Jennings J H, Rizzi G, Stamatakis A M, Ung R L, Stuber G D (2013). The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science, 341(6153): 1517–1521

DOI PMID

53
Jerlhag E, Janson A C, Waters S, Engel J A (2012). Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats. PLoS ONE, 7(11): e49557

DOI PMID

54
Johnson P M, Kenny P J (2010). Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats (vol 13, pg 635, 2010). Nat Neurosci, 13: 1033–1033

DOI

55
Karnani M M, Szabó G, Erdélyi F, Burdakov D (2013). Lateral hypothalamic GAD65 neurons are spontaneously firing and distinct from orexin- and melanin-concentrating hormone neurons. J Physiol, 591(Pt 4): 933–953

DOI PMID

56
Kauer J A, Malenka R C (2007). Synaptic plasticity and addiction. Nat Rev Neurosci, 8(11): 844–858

DOI PMID

57
Kelley A E (2004). Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev, 27(8): 765–776

DOI PMID

58
Kelley A E, Baldo B A, Pratt W E (2005a). A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol, 493(1): 72–85

DOI PMID

59
Kelley A E, Baldo B A, Pratt W E, Will M J (2005b). Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav, 86(5): 773–795

DOI PMID

60
Kelley A E, Bless E P, Swanson C J (1996). Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats. J Pharmacol Exp Ther, 278(3): 1499–1507

PMID

61
Kempadoo K A, Tourino C, Cho S L, Magnani F, Leinninger G M, Stuber G D, Zhang F, Myers M G, Deisseroth K, de Lecea L, Bonci A (2013) Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J Neurosci, 33: 7618–7626

62
Kenny P J (2011a). Common cellular and molecular mechanisms in obesity and drug addiction. Nat Rev Neurosci, 12(11): 638–651

DOI PMID

63
Kenny P J (2011b). Reward mechanisms in obesity: new insights and future directions. Neuron, 69(4): 664–679

DOI PMID

64
Kokkotou E G, Tritos N A, Mastaitis J W, Slieker L, Maratos-Flier E (2001). Melanin-concentrating hormone receptor is a target of leptin action in the mouse brain. Endocrinology, 142(2): 680–686

DOI PMID

65
Krilowicz B L, Szymusiak R, McGinty D (1994). Regulation of posterior lateral hypothalamic arousal related neuronal discharge by preoptic anterior hypothalamic warming. Brain Res, 668(1–2): 30–38

DOI PMID

66
Lalonde R, Qian S (2007). Exploratory activity, motor coordination, and spatial learning in Mchr1 knockout mice. Behav Brain Res, 178(2): 293–304

DOI PMID

67
Land B B, Narayanan N S, Liu R J, Gianessi C A, Brayton C E, Grimaldi D M, Sarhan M, Guarnieri D J, Deisseroth K, Aghajanian G K, DiLeone R J (2014). Medial prefrontal D1 dopamine neurons control food intake. Nat Neurosci, 17(2): 248–253

DOI PMID

68
Leinninger G M, Jo Y H, Leshan R L, Louis G W, Yang H, Barrera J G, Wilson H, Opland D M, Faouzi M A, Gong Y, Jones J C, Rhodes C J, Chua S Jr, Diano S, Horvath T L, Seeley R J, Becker J B, Münzberg H, Myers M G Jr (2009). Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab, 10(2): 89–98

DOI PMID

69
Leinninger G M, Opland D M, Jo Y H, Faouzi M, Christensen L, Cappellucci L A, Rhodes C J, Gnegy M E, Becker J B, Pothos E N, Seasholtz A F, Thompson R C, Myers M G Jr (2011). Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab, 14(3): 313–323

DOI PMID

70
Lim B K, Huang K W, Grueter B A, Rothwell P E, Malenka R C (2012). Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature, 487(7406): 183–189

DOI PMID

71
Lu X Y, Bagnol D, Burke S, Akil H, Watson S J (2000). Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Horm Behav, 37(4): 335–344

DOI PMID

72
Ludwig D S, Tritos N A, Mastaitis J W, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier J S, Maratos-Flier E (2001). Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest, 107(3): 379–386

DOI PMID

73
Lutter M, Nestler E J (2009). Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr, 139(3): 629–632

DOI PMID

74
Marsh D J, Weingarth D T, Novi D E, Chen H Y, Trumbauer M E, Chen A S, Guan X M, Jiang M M, Feng Y, Camacho R E, Shen Z, Frazier E G, Yu H, Metzger J M, Kuca S J, Shearman L P, Gopal-Truter S, MacNeil D J, Strack A M, MacIntyre D E, Van der Ploeg L H, Qian S (2002). Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA, 99(5): 3240–3245

DOI PMID

75
McCarty C A, Kosterman R, Mason W A, McCauley E, Hawkins J D, Herrenkohl T I, Lengua L J (2009). Longitudinal associations among depression, obesity and alcohol use disorders in young adulthood. Gen Hosp Psychiatry, 31(5): 442–450

DOI PMID

76
Meister B (2007). Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav, 92(1–2): 263–271

DOI PMID

77
Menatti A R, Weeks J W, Levinson C A, McGowan M M (2013). Exploring the relationship between social anxiety and bulimic symptoms: mediational effects of perfectionism among females. Cognit Ther Res, 37(5): 914–922

DOI PMID

78
Miller N E (1960). Motivational effects of brain stimulation and drugs. Fed Proc, 19: 846–854

PMID

79
Millington G W (2007). The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab (Lond), 4(1): 18

DOI PMID

80
Morrison S D, Mayer J (1957). Adipsia and aphagia in rats after lateral subthalamic lesions. Am J Physiol, 191(2): 248–254

PMID

81
Morton G J, Cummings D E, Baskin D G, Barsh G S, Schwartz M W (2006). Central nervous system control of food intake and body weight. Nature, 443(7109): 289–295

DOI PMID

82
Morton G J, Meek T H, Schwartz M W (2014). Neurobiology of food intake in health and disease. Nat Rev Neurosci, 15(6): 367–378

DOI PMID

83
Morton T D, Salovitz B (2006). Evolving a theoretical model of child safety in maltreating families. Child Abuse Negl, 30(12): 1317–1327

DOI PMID

84
Murray S, Tulloch A, Gold M S, Avena N M (2014). Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nat Rev Endocrinol, 10(9): 540–552

DOI PMID

85
Musselman D L, Betan E, Larsen H, Phillips L S (2003). Relationship of depression to diabetes types 1 and 2: epidemiology, biology, and treatment. Biol Psychiatry, 54(3): 317–329

DOI PMID

86
Nahon J L, Presse F, Bittencourt J C, Sawchenko P E, Vale W (1989). The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology, 125(4): 2056–2065

DOI PMID

87
Narayanan N S, Guarnieri D J, DiLeone R J (2010). Metabolic hormones, dopamine circuits, and feeding. Front Neuroendocrinol, 31(1): 104–112

DOI PMID

88
Olds J, Milner P (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol, 47(6): 419–427

DOI PMID

89
Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor E C, Lüscher C (2014). Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature, 509(7501): 459–464

DOI PMID

90
Peciña S, Berridge K C (1995). Central enhancement of taste pleasure by intraventricular morphine. Neurobiology (Bp), 3(3-4): 269–280

PMID

91
Peciña S, Berridge K C (2000). Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res, 863(1–2): 71–86

DOI PMID

92
Petrovich G D, Holland P C, Gallagher M (2005) Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J Neurosci, 25: 8295–8302

93
Pfaffly J, Michaelides M, Wang G J, Pessin J E, Volkow N D, Thanos P K (2010). Leptin increases striatal dopamine D2 receptor binding in leptin-deficient obese (ob/ob) mice. Synapse, 64(7): 503–510

DOI PMID

94
Qu D, Ludwig D S, Gammeltoft S, Piper M, Pelleymounter M A, Cullen M J, Mathes W F, Przypek R, Kanarek R, Maratos-Flier E (1996). A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature, 380(6571): 243–247

DOI PMID

95
Rada P, Avena N M, Hoebel B G (2005). Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience, 134(3): 737–744

DOI PMID

96
Rosin D L, Weston M C, Sevigny C P, Stornetta R L, Guyenet P G (2003). Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J Comp Neurol, 465(4): 593–603

DOI PMID

97
Routtenberg A, Lindy J (1965). Effects of the availability of rewarding septal and hypothalamic stimulation on bar pressing for food under conditions of deprivation. J Comp Physiol Psychol, 60(2): 158–161

DOI PMID

98
Sahu A, Carraway R E, Wang Y P (2001). Evidence that neurotensin mediates the central effect of leptin on food intake in rat. Brain Res, 888(2): 343–347

DOI PMID

99
Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli R M, Tanaka H, Williams S C, Richardson J A, Kozlowski G P, Wilson S, Arch J R, Buckingham R E, Haynes A C, Carr S A, Annan R S, McNulty D E, Liu W S, Terrett J A, Elshourbagy N A, Bergsma D J, Yanagisawa M (1998). Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92(4): 573–585

DOI PMID

100
Salamone J D, Cousins M S, Bucher S (1994). Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res, 65(2): 221–229

DOI PMID

101
Sano H, Yokoi M (2007) Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons. J Neurosci, 27: 6948–6955

102
Saper C B, Chou T C, Elmquist J K (2002). The need to feed: homeostatic and hedonic control of eating. Neuron, 36(2): 199–211

DOI PMID

103
Saper C B, Lu J, Chou T C, Gooley J (2005). The hypothalamic integrator for circadian rhythms. Trends Neurosci, 28(3): 152–157

DOI PMID

104
Sears R M, Liu R J, Narayanan N S, Sharf R, Yeckel M F, Laubach M, Aghajanian GK, DiLeone R J (2010) Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J Neurosci, 30: 8263–8273

105
Shimada M, Tritos N A, Lowell B B, Flier J S, Maratos-Flier E (1998). Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature, 396(6712): 670–674

DOI PMID

106
Skibicka K P, Shirazi R H, Rabasa-Papio C, Alvarez-Crespo M, Neuber C, Vogel H, Dickson S L (2013). Divergent circuitry underlying food reward and intake effects of ghrelin: dopaminergic VTA-accumbens projection mediates ghrelin’s effect on food reward but not food intake. Neuropharmacology, 73: 274–283

DOI PMID

107
Skofitsch G, Jacobowitz D M, Zamir N (1985). Immunohistochemical localization of a melanin concentrating hormone-like peptide in the rat brain. Brain Res Bull, 15(6): 635–649

DOI PMID

108
Small D M, Jones-Gotman M, Dagher A (2003). Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage, 19(4): 1709–1715

DOI PMID

109
Spies G (1965). Food versus intracranial self-stimulation reinforcement in food-deprived rats. J Comp Physiol Psychol, 60(2): 153–157

DOI PMID

110
Stanley B G, Willett V L 3rd, Donias H W, Ha L H, Spears L C (1993). The lateral hypothalamus: a primary site mediating excitatory amino acid-elicited eating. Brain Res, 630(1–2): 41–49

DOI PMID

111
Sterling P, Eyer J (1988) Allostasis: a New Paradigm to Explain Arousal Pathology. John Wiley & Sons

112
Sternson S M (2013). Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron, 77(5): 810–824

DOI PMID

113
Stratford T R, Kelley A E (1999). Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J Neurosci, 19(24): 11040–11048

PMID

114
Stuber G D, Evans S B, Higgins M S, Pu Y, Figlewicz D P (2002). Food restriction modulates amphetamine-conditioned place preference and nucleus accumbens dopamine release in the rat. Synapse, 46(2): 83–90

DOI PMID

115
Stuber G D, Sparta D R, Stamatakis A M, van Leeuwen W A, Hardjoprajitno J E, Cho S, Tye K M, Kempadoo K A, Zhang F, Deisseroth K, Bonci A (2011). Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature, 475(7356): 377–380

DOI PMID

116
Teitelbaum P, Stellar E (1954). Recovery from the failure to eat produced by hypothalamic lesions. Science, 120(3126): 894–895

DOI PMID

117
Thanos P K, Michaelides M, Piyis Y K, Wang G J, Volkow N D (2008). Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with in-vivo muPET imaging ([11C] raclopride) and in-vitro ([3H] spiperone) autoradiography. Synapse, 62(1): 50–61

DOI PMID

118
Tomasi D, Wang G J, Wang R, Caparelli E C, Logan J, Volkow N D (2014). Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: Association to striatal D2/D3 receptors. Hum Brain Mapp

PMID

119
Trifilieff P, Martinez D (2014). Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity. Neuropharmacology, 76(Pt B): 498–509

DOI PMID

120
Trojniar W, Plucińska K, Ignatowska-Jankowska B, Jankowski M (2007). Damage to the nucleus accumbens shell but not core impairs ventral tegmental area stimulation-induced feeding. J Physiol Pharmacol, 58(Suppl 3): 63–71

PMID

121
Volkow N D, Wang G J, Baler R D (2011). Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci, 15(1): 37–46

DOI PMID

122
Volkow N D, Wang G J, Fowler J S, Telang F (2008). Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci, 363(1507): 3191–3200

DOI PMID

123
Volkow N D, Wang G J, Tomasi D, Baler R D (2013). Obesity and addiction: neurobiological overlaps. Obes Rev, 14(1): 2–18

DOI PMID

124
Volkow N D, Wise R A (2005). How can drug addiction help us understand obesity? Nat Neurosci, 8(5): 555–560

DOI PMID

125
Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell B B (2011). Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron, 71(1): 142–154

DOI PMID

126
Wang G J, Volkow N D, Logan J, Pappas N R, Wong C T, Zhu W, Netusil N, Fowler J S (2001). Brain dopamine and obesity. Lancet, 357(9253): 354–357

DOI PMID

127
Wang L, Shen M, Yu Y, Tao Y, Zheng P, Wang F, Ma L (2014). Optogenetic activation of GABAergic neurons in the nucleus accumbens decreases the activity of the ventral pallidum and the expression of cocaine-context-associated memory. Int J Neuropsychopharmacol, 17(5): 753–763

DOI PMID

128
Willie J T, Chemelli R M, Sinton C M, Yanagisawa M (2001). To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci, 24(1): 429–458

DOI PMID

129
Wise R A (1974). Lateral hypothalamic electrical stimulation: does it make animals ‘hungry’? Brain Res, 67(2): 187–209

DOI PMID

130
Wise R A (2006). Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci, 361(1471): 1149–1158

DOI PMID

131
Yamanaka A, Beuckmann C T, Willie J T, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, Sakurai T (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron, 38(5): 701–713

DOI PMID

132
Zahm D S, Brog J S (1992). On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience, 50(4): 751–767

DOI PMID

133
Zheng H, Corkern M, Stoyanova I, Patterson L M, Tian R, Berthoud H R (2003). Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. Am J Physiol Regul Integr Comp Physiol, 284(6): R1436–R1444

PMID

Outlines

/