High on food: the interaction between the neural circuits for feeding and for reward
Received date: 01 Nov 2014
Accepted date: 09 Jan 2015
Published date: 06 May 2015
Copyright
Hunger, mostly initiated by a deficiency in energy, induces food seeking and intake. However, the drive toward food is not only regulated by physiological needs, but is motivated by the pleasure derived from ingestion of food, in particular palatable foods. Therefore, feeding is viewed as an adaptive motivated behavior that involves integrated communication between homeostatic feeding circuits and reward circuits. The initiation and termination of a feeding episode are instructed by a variety of neuronal signals, and maladaptive plasticity in almost any component of the network may lead to the development of pathological eating disorders. In this review we will summarize the latest understanding of how the feeding circuits and reward circuits in the brain interact. We will emphasize communication between the hypothalamus and the mesolimbic dopamine system and highlight complexities, discrepancies, open questions and future directions for the field.
Jing-Jing Liu , Diptendu Mukherjee , Doron Haritan , Bogna Ignatowska-Jankowska , Ji Liu , Ami Citri , Zhiping P. Pang . High on food: the interaction between the neural circuits for feeding and for reward[J]. Frontiers in Biology, 2015 , 10(2) : 165 -176 . DOI: 10.1007/s11515-015-1348-0
1 |
Anand B K, Brobeck J R (1951). Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med, 77(2): 323–324
|
2 |
Atasoy D, Aponte Y, Su H H, Sternson S M (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci, 28: 7025–7030
|
3 |
Atasoy D, Betley J N, Su H H, Sternson S M (2012). Deconstruction of a neural circuit for hunger. Nature, 488(7410): 172–177
|
4 |
Atrens D M, Williams M P, Brady C J, Hunt G E (1982). Energy balance and hypothalamic self-stimulation. Behav Brain Res, 5(2): 131–142
|
5 |
Avena N M, Rada P, Hoebel B G (2008). Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev, 32(1): 20–39
|
6 |
Baicy K, London E D, Monterosso J, Wong M L, Delibasi T, Sharma A, Licinio J (2007). Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proc Natl Acad Sci USA, 104(46): 18276–18279
|
7 |
Belgardt B F, Okamura T, Brüning J C (2009). Hormone and glucose signalling in POMC and AgRP neurons. J Physiol, 587(Pt 22): 5305–5314
|
8 |
Berridge K C (2009). ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav, 97(5): 537–550
|
9 |
Betley J N, Cao Z F, Ritola K D, Sternson S M (2013). Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell, 155(6): 1337–1350
|
10 |
Bittencourt J C, Presse F, Arias C, Peto C, Vaughan J, Nahon J L, Vale W, Sawchenko P E (1992). The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol, 319(2): 218–245
|
11 |
Blouet C, Schwartz G J (2010). Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res, 209(1): 1–12
|
12 |
Borgland S L, Ungless M A, Bonci A (2010). Convergent actions of orexin/hypocretin and CRF on dopamine neurons: Emerging players in addiction. Brain Res, 1314: 139–144
|
13 |
Boules M, Cusack B, Zhao L, Fauq A, McCormick D J, Richelson E (2000). A novel neurotensin peptide analog given extracranially decreases food intake and weight in rodents. Brain Res, 865(1): 35–44
|
14 |
Cardinal R N, Parkinson J A, Hall J, Everitt B J (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev, 26(3): 321–352
|
15 |
Carroll M E, France C P, Meisch R A (1979). Food deprivation increases oral and intravenous drug intake in rats. Science, 205(4403): 319–321
|
16 |
Chung S, Hopf F W, Nagasaki H, Li C Y, Belluzzi J D, Bonci A, Civelli O (2009). The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci USA, 106(16): 6772–6777
|
17 |
Ciriello J, McMurray J C, Babic T, de Oliveira C V (2003). Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Res, 991(1–2): 133–141
|
18 |
Citri A, Malenka R C (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33(1): 18–41
|
19 |
Coll A P, Farooqi I S, O’Rahilly S (2007). The hormonal control of food intake. Cell, 129(2): 251–262
|
20 |
Coons E E, Cruce J A (1968). Lateral hypothalamus: food current intensity in maintaining self-stimulation of hunger. Science, 159(3819): 1117–1119
|
21 |
Cota D, Barrera J G, Seeley R J (2006). Leptin in energy balance and reward: two faces of the same coin? Neuron, 51(6): 678–680
|
22 |
Davis C, Strachan S, Berkson M (2004). Sensitivity to reward: implications for overeating and overweight. Appetite, 42(2): 131–138
|
23 |
Dietrich M O, Horvath T L (2009). Feeding signals and brain circuitry. Eur J Neurosci, 30(9): 1688–1696
|
24 |
Domingos A I, Vaynshteyn J, Voss H U, Ren X, Gradinaru V, Zang F, Deisseroth K, de Araujo I E, Friedman J (2011). Leptin regulates the reward value of nutrient. Nat Neurosci, 14(12): 1562–1568
|
25 |
Dossat A M, Diaz R, Gallo L, Panagos A, Kay K, Williams D L (2013). Nucleus accumbens GLP-1 receptors influence meal size and palatability. Am J Physiol Endocrinol Metab, 304(12): E1314–E1320
|
26 |
Dossat A M, Lilly N, Kay K, Williams D L (2011). Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci, 31(41): 14453–14457
|
27 |
Dube M G, Kalra S P, Kalra P S (1999). Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res, 842(2): 473–477
|
28 |
Everson S A, Maty S C, Lynch J W, Kaplan G A (2002). Epidemiologic evidence for the relation between socioeconomic status and depression, obesity, and diabetes. J Psychosom Res, 53(4): 891–895
|
29 |
Fadel J, Deutch A Y (2002). Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience, 111(2): 379–387
|
30 |
Farooqi I S, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher P C (2007). Leptin regulates striatal regions and human eating behavior. Science, 317(5843): 1355
|
31 |
Feifel D, Goldenberg J, Melendez G, Shilling P D (2010). The acute and subchronic effects of a brain-penetrating, neurotensin-1 receptor agonist on feeding, body weight and temperature. Neuropharmacology, 58(1): 195–198
|
32 |
Figlewicz D P (2003). Insulin, food intake, and reward. Semin Clin Neuropsychiatry, 8(2): 82–93
|
33 |
Frank R A, Preshaw R L, Stutz R M, Valenstein E S (1982). Lateral hypothalamic stimulation: stimulus-bound eating and self-deprivation. Physiol Behav, 29(1): 17–21
|
34 |
Fulton S, Pissios P, Manchon R P, Stiles L, Frank L, Pothos E N, Maratos-Flier E, Flier J S (2006). Leptin regulation of the mesoaccumbens dopamine pathway. Neuron, 51(6): 811–822
|
35 |
Fulton S, Woodside B, Shizgal P (2000). Modulation of brain reward circuitry by leptin. Science, 287(5450): 125–128
|
36 |
Geiger B M, Haburcak M, Avena N M, Moyer M C, Hoebel B G, Pothos E N (2009). Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience, 159(4): 1193–1199
|
37 |
Georgescu D, Sears R M, Hommel J D, Barrot M, Bolanos C A, Marsh D J, Bednarek M A, Bibb J A, Maratos-Flier E, Nestler E J, DiLeone R J (2005). The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci, 25: 2933–2940
|
38 |
Goforth P B, Leinninger G M, Patterson C M, Satin L S, Myers M G Jr. (2014) Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J Neurosci, 34: 11405–11415
|
39 |
Goldstone A P (2006). The hypothalamus, hormones, and hunger: alterations in human obesity and illness. Prog Brain Res, 153: 57–73
|
40 |
Gutierrez R, Lobo M K, Zhang F, de Lecea L (2011). Neural integration of reward, arousal, and feeding: recruitment of VTA, lateral hypothalamus, and ventral striatal neurons. IUBMB Life, 63(10): 824–830
|
41 |
Hahn J D, Swanson L W (2010). Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Brain Res Rev, 64(1): 14–103
|
42 |
Hahn J D, Swanson L W (2012). Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. J Comp Neurol, 520(9): 1831–1890
|
43 |
Håkansson M, de Lecea L, Sutcliffe J G, Yanagisawa M, Meister B (1999). Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus. J Neuroendocrinol, 11(8): 653–663
|
44 |
Haltia L T, Rinne J O, Merisaari H, Maguire R P, Savontaus E, Helin S, Någren K, Kaasinen V (2007). Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse, 61(9): 748–756
|
45 |
Hansen S, Stanfield E J, Everitt B J (1981). The effects of lesions of lateral tegmental noradrenergic neurons on components of sexual behavior and pseudopregnancy in female rats. Neuroscience, 6(6): 1105–1117
|
46 |
Harthoorn L F, Sañé A, Nethe M, Van Heerikhuize J J (2005). Multi-transcriptional profiling of melanin-concentrating hormone and orexin-containing neurons. Cell Mol Neurobiol, 25(8): 1209–1223
|
47 |
Hoebel B G, Teitelbaum P (1962). Hypothalamic control of feeding and self-stimulation. Science, 135(3501): 375–377
|
48 |
Hommel J D, Trinko R, Sears R M, Georgescu D, Liu Z W, Gao X B, Thurmon J J, Marinelli M, DiLeone R J (2006). Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron, 51(6): 801–810
|
49 |
Horjales-Araujo E, Hellysaz A, Broberger C (2014). Lateral hypothalamic thyrotropin-releasing hormone neurons: distribution and relationship to histochemically defined cell populations in the rat. Neuroscience, 277: 87–102
|
50 |
Horvath T L (2005). The hardship of obesity: a soft-wired hypothalamus. Nat Neurosci, 8(5): 561–565
|
51 |
Ishiwari K, Weber S M, Mingote S, Correa M, Salamone J D (2004). Accumbens dopamine and the regulation of effort in food-seeking behavior: modulation of work output by different ratio or force requirements. Behav Brain Res, 151(1–2): 83–91
|
52 |
Jennings J H, Rizzi G, Stamatakis A M, Ung R L, Stuber G D (2013). The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science, 341(6153): 1517–1521
|
53 |
Jerlhag E, Janson A C, Waters S, Engel J A (2012). Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats. PLoS ONE, 7(11): e49557
|
54 |
Johnson P M, Kenny P J (2010). Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats (vol 13, pg 635, 2010). Nat Neurosci, 13: 1033–1033
|
55 |
Karnani M M, Szabó G, Erdélyi F, Burdakov D (2013). Lateral hypothalamic GAD65 neurons are spontaneously firing and distinct from orexin- and melanin-concentrating hormone neurons. J Physiol, 591(Pt 4): 933–953
|
56 |
Kauer J A, Malenka R C (2007). Synaptic plasticity and addiction. Nat Rev Neurosci, 8(11): 844–858
|
57 |
Kelley A E (2004). Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev, 27(8): 765–776
|
58 |
Kelley A E, Baldo B A, Pratt W E (2005a). A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol, 493(1): 72–85
|
59 |
Kelley A E, Baldo B A, Pratt W E, Will M J (2005b). Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav, 86(5): 773–795
|
60 |
Kelley A E, Bless E P, Swanson C J (1996). Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats. J Pharmacol Exp Ther, 278(3): 1499–1507
|
61 |
Kempadoo K A, Tourino C, Cho S L, Magnani F, Leinninger G M, Stuber G D, Zhang F, Myers M G, Deisseroth K, de Lecea L, Bonci A (2013) Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J Neurosci, 33: 7618–7626
|
62 |
Kenny P J (2011a). Common cellular and molecular mechanisms in obesity and drug addiction. Nat Rev Neurosci, 12(11): 638–651
|
63 |
Kenny P J (2011b). Reward mechanisms in obesity: new insights and future directions. Neuron, 69(4): 664–679
|
64 |
Kokkotou E G, Tritos N A, Mastaitis J W, Slieker L, Maratos-Flier E (2001). Melanin-concentrating hormone receptor is a target of leptin action in the mouse brain. Endocrinology, 142(2): 680–686
|
65 |
Krilowicz B L, Szymusiak R, McGinty D (1994). Regulation of posterior lateral hypothalamic arousal related neuronal discharge by preoptic anterior hypothalamic warming. Brain Res, 668(1–2): 30–38
|
66 |
Lalonde R, Qian S (2007). Exploratory activity, motor coordination, and spatial learning in Mchr1 knockout mice. Behav Brain Res, 178(2): 293–304
|
67 |
Land B B, Narayanan N S, Liu R J, Gianessi C A, Brayton C E, Grimaldi D M, Sarhan M, Guarnieri D J, Deisseroth K, Aghajanian G K, DiLeone R J (2014). Medial prefrontal D1 dopamine neurons control food intake. Nat Neurosci, 17(2): 248–253
|
68 |
Leinninger G M, Jo Y H, Leshan R L, Louis G W, Yang H, Barrera J G, Wilson H, Opland D M, Faouzi M A, Gong Y, Jones J C, Rhodes C J, Chua S Jr, Diano S, Horvath T L, Seeley R J, Becker J B, Münzberg H, Myers M G Jr (2009). Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab, 10(2): 89–98
|
69 |
Leinninger G M, Opland D M, Jo Y H, Faouzi M, Christensen L, Cappellucci L A, Rhodes C J, Gnegy M E, Becker J B, Pothos E N, Seasholtz A F, Thompson R C, Myers M G Jr (2011). Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab, 14(3): 313–323
|
70 |
Lim B K, Huang K W, Grueter B A, Rothwell P E, Malenka R C (2012). Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature, 487(7406): 183–189
|
71 |
Lu X Y, Bagnol D, Burke S, Akil H, Watson S J (2000). Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Horm Behav, 37(4): 335–344
|
72 |
Ludwig D S, Tritos N A, Mastaitis J W, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier J S, Maratos-Flier E (2001). Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest, 107(3): 379–386
|
73 |
Lutter M, Nestler E J (2009). Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr, 139(3): 629–632
|
74 |
Marsh D J, Weingarth D T, Novi D E, Chen H Y, Trumbauer M E, Chen A S, Guan X M, Jiang M M, Feng Y, Camacho R E, Shen Z, Frazier E G, Yu H, Metzger J M, Kuca S J, Shearman L P, Gopal-Truter S, MacNeil D J, Strack A M, MacIntyre D E, Van der Ploeg L H, Qian S (2002). Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA, 99(5): 3240–3245
|
75 |
McCarty C A, Kosterman R, Mason W A, McCauley E, Hawkins J D, Herrenkohl T I, Lengua L J (2009). Longitudinal associations among depression, obesity and alcohol use disorders in young adulthood. Gen Hosp Psychiatry, 31(5): 442–450
|
76 |
Meister B (2007). Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav, 92(1–2): 263–271
|
77 |
Menatti A R, Weeks J W, Levinson C A, McGowan M M (2013). Exploring the relationship between social anxiety and bulimic symptoms: mediational effects of perfectionism among females. Cognit Ther Res, 37(5): 914–922
|
78 |
Miller N E (1960). Motivational effects of brain stimulation and drugs. Fed Proc, 19: 846–854
|
79 |
Millington G W (2007). The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab (Lond), 4(1): 18
|
80 |
Morrison S D, Mayer J (1957). Adipsia and aphagia in rats after lateral subthalamic lesions. Am J Physiol, 191(2): 248–254
|
81 |
Morton G J, Cummings D E, Baskin D G, Barsh G S, Schwartz M W (2006). Central nervous system control of food intake and body weight. Nature, 443(7109): 289–295
|
82 |
Morton G J, Meek T H, Schwartz M W (2014). Neurobiology of food intake in health and disease. Nat Rev Neurosci, 15(6): 367–378
|
83 |
Morton T D, Salovitz B (2006). Evolving a theoretical model of child safety in maltreating families. Child Abuse Negl, 30(12): 1317–1327
|
84 |
Murray S, Tulloch A, Gold M S, Avena N M (2014). Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nat Rev Endocrinol, 10(9): 540–552
|
85 |
Musselman D L, Betan E, Larsen H, Phillips L S (2003). Relationship of depression to diabetes types 1 and 2: epidemiology, biology, and treatment. Biol Psychiatry, 54(3): 317–329
|
86 |
Nahon J L, Presse F, Bittencourt J C, Sawchenko P E, Vale W (1989). The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology, 125(4): 2056–2065
|
87 |
Narayanan N S, Guarnieri D J, DiLeone R J (2010). Metabolic hormones, dopamine circuits, and feeding. Front Neuroendocrinol, 31(1): 104–112
|
88 |
Olds J, Milner P (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol, 47(6): 419–427
|
89 |
Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor E C, Lüscher C (2014). Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature, 509(7501): 459–464
|
90 |
Peciña S, Berridge K C (1995). Central enhancement of taste pleasure by intraventricular morphine. Neurobiology (Bp), 3(3-4): 269–280
|
91 |
Peciña S, Berridge K C (2000). Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res, 863(1–2): 71–86
|
92 |
Petrovich G D, Holland P C, Gallagher M (2005) Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J Neurosci, 25: 8295–8302
|
93 |
Pfaffly J, Michaelides M, Wang G J, Pessin J E, Volkow N D, Thanos P K (2010). Leptin increases striatal dopamine D2 receptor binding in leptin-deficient obese (ob/ob) mice. Synapse, 64(7): 503–510
|
94 |
Qu D, Ludwig D S, Gammeltoft S, Piper M, Pelleymounter M A, Cullen M J, Mathes W F, Przypek R, Kanarek R, Maratos-Flier E (1996). A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature, 380(6571): 243–247
|
95 |
Rada P, Avena N M, Hoebel B G (2005). Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience, 134(3): 737–744
|
96 |
Rosin D L, Weston M C, Sevigny C P, Stornetta R L, Guyenet P G (2003). Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J Comp Neurol, 465(4): 593–603
|
97 |
Routtenberg A, Lindy J (1965). Effects of the availability of rewarding septal and hypothalamic stimulation on bar pressing for food under conditions of deprivation. J Comp Physiol Psychol, 60(2): 158–161
|
98 |
Sahu A, Carraway R E, Wang Y P (2001). Evidence that neurotensin mediates the central effect of leptin on food intake in rat. Brain Res, 888(2): 343–347
|
99 |
Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli R M, Tanaka H, Williams S C, Richardson J A, Kozlowski G P, Wilson S, Arch J R, Buckingham R E, Haynes A C, Carr S A, Annan R S, McNulty D E, Liu W S, Terrett J A, Elshourbagy N A, Bergsma D J, Yanagisawa M (1998). Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92(4): 573–585
|
100 |
Salamone J D, Cousins M S, Bucher S (1994). Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res, 65(2): 221–229
|
101 |
Sano H, Yokoi M (2007) Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons. J Neurosci, 27: 6948–6955
|
102 |
Saper C B, Chou T C, Elmquist J K (2002). The need to feed: homeostatic and hedonic control of eating. Neuron, 36(2): 199–211
|
103 |
Saper C B, Lu J, Chou T C, Gooley J (2005). The hypothalamic integrator for circadian rhythms. Trends Neurosci, 28(3): 152–157
|
104 |
Sears R M, Liu R J, Narayanan N S, Sharf R, Yeckel M F, Laubach M, Aghajanian GK, DiLeone R J (2010) Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J Neurosci, 30: 8263–8273
|
105 |
Shimada M, Tritos N A, Lowell B B, Flier J S, Maratos-Flier E (1998). Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature, 396(6712): 670–674
|
106 |
Skibicka K P, Shirazi R H, Rabasa-Papio C, Alvarez-Crespo M, Neuber C, Vogel H, Dickson S L (2013). Divergent circuitry underlying food reward and intake effects of ghrelin: dopaminergic VTA-accumbens projection mediates ghrelin’s effect on food reward but not food intake. Neuropharmacology, 73: 274–283
|
107 |
Skofitsch G, Jacobowitz D M, Zamir N (1985). Immunohistochemical localization of a melanin concentrating hormone-like peptide in the rat brain. Brain Res Bull, 15(6): 635–649
|
108 |
Small D M, Jones-Gotman M, Dagher A (2003). Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage, 19(4): 1709–1715
|
109 |
Spies G (1965). Food versus intracranial self-stimulation reinforcement in food-deprived rats. J Comp Physiol Psychol, 60(2): 153–157
|
110 |
Stanley B G, Willett V L 3rd, Donias H W, Ha L H, Spears L C (1993). The lateral hypothalamus: a primary site mediating excitatory amino acid-elicited eating. Brain Res, 630(1–2): 41–49
|
111 |
Sterling P, Eyer J (1988) Allostasis: a New Paradigm to Explain Arousal Pathology. John Wiley & Sons
|
112 |
Sternson S M (2013). Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron, 77(5): 810–824
|
113 |
Stratford T R, Kelley A E (1999). Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J Neurosci, 19(24): 11040–11048
|
114 |
Stuber G D, Evans S B, Higgins M S, Pu Y, Figlewicz D P (2002). Food restriction modulates amphetamine-conditioned place preference and nucleus accumbens dopamine release in the rat. Synapse, 46(2): 83–90
|
115 |
Stuber G D, Sparta D R, Stamatakis A M, van Leeuwen W A, Hardjoprajitno J E, Cho S, Tye K M, Kempadoo K A, Zhang F, Deisseroth K, Bonci A (2011). Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature, 475(7356): 377–380
|
116 |
Teitelbaum P, Stellar E (1954). Recovery from the failure to eat produced by hypothalamic lesions. Science, 120(3126): 894–895
|
117 |
Thanos P K, Michaelides M, Piyis Y K, Wang G J, Volkow N D (2008). Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with in-vivo muPET imaging ([11C] raclopride) and in-vitro ([3H] spiperone) autoradiography. Synapse, 62(1): 50–61
|
118 |
Tomasi D, Wang G J, Wang R, Caparelli E C, Logan J, Volkow N D (2014). Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: Association to striatal D2/D3 receptors. Hum Brain Mapp
|
119 |
Trifilieff P, Martinez D (2014). Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity. Neuropharmacology, 76(Pt B): 498–509
|
120 |
Trojniar W, Plucińska K, Ignatowska-Jankowska B, Jankowski M (2007). Damage to the nucleus accumbens shell but not core impairs ventral tegmental area stimulation-induced feeding. J Physiol Pharmacol, 58(Suppl 3): 63–71
|
121 |
Volkow N D, Wang G J, Baler R D (2011). Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci, 15(1): 37–46
|
122 |
Volkow N D, Wang G J, Fowler J S, Telang F (2008). Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci, 363(1507): 3191–3200
|
123 |
Volkow N D, Wang G J, Tomasi D, Baler R D (2013). Obesity and addiction: neurobiological overlaps. Obes Rev, 14(1): 2–18
|
124 |
Volkow N D, Wise R A (2005). How can drug addiction help us understand obesity? Nat Neurosci, 8(5): 555–560
|
125 |
Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell B B (2011). Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron, 71(1): 142–154
|
126 |
Wang G J, Volkow N D, Logan J, Pappas N R, Wong C T, Zhu W, Netusil N, Fowler J S (2001). Brain dopamine and obesity. Lancet, 357(9253): 354–357
|
127 |
Wang L, Shen M, Yu Y, Tao Y, Zheng P, Wang F, Ma L (2014). Optogenetic activation of GABAergic neurons in the nucleus accumbens decreases the activity of the ventral pallidum and the expression of cocaine-context-associated memory. Int J Neuropsychopharmacol, 17(5): 753–763
|
128 |
Willie J T, Chemelli R M, Sinton C M, Yanagisawa M (2001). To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci, 24(1): 429–458
|
129 |
Wise R A (1974). Lateral hypothalamic electrical stimulation: does it make animals ‘hungry’? Brain Res, 67(2): 187–209
|
130 |
Wise R A (2006). Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci, 361(1471): 1149–1158
|
131 |
Yamanaka A, Beuckmann C T, Willie J T, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, Sakurai T (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron, 38(5): 701–713
|
132 |
Zahm D S, Brog J S (1992). On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience, 50(4): 751–767
|
133 |
Zheng H, Corkern M, Stoyanova I, Patterson L M, Tian R, Berthoud H R (2003). Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. Am J Physiol Regul Integr Comp Physiol, 284(6): R1436–R1444
|
/
〈 | 〉 |