High on food: the interaction between the neural circuits for feeding and for reward
Jing-Jing Liu, Diptendu Mukherjee, Doron Haritan, Bogna Ignatowska-Jankowska, Ji Liu, Ami Citri, Zhiping P. Pang
High on food: the interaction between the neural circuits for feeding and for reward
Hunger, mostly initiated by a deficiency in energy, induces food seeking and intake. However, the drive toward food is not only regulated by physiological needs, but is motivated by the pleasure derived from ingestion of food, in particular palatable foods. Therefore, feeding is viewed as an adaptive motivated behavior that involves integrated communication between homeostatic feeding circuits and reward circuits. The initiation and termination of a feeding episode are instructed by a variety of neuronal signals, and maladaptive plasticity in almost any component of the network may lead to the development of pathological eating disorders. In this review we will summarize the latest understanding of how the feeding circuits and reward circuits in the brain interact. We will emphasize communication between the hypothalamus and the mesolimbic dopamine system and highlight complexities, discrepancies, open questions and future directions for the field.
feeding / neural circuitry, hedonic, reward, mesolimbic system, dopamine, hypothalamus
[1] |
Anand B K, Brobeck J R (1951). Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med, 77(2): 323–324
CrossRef
Pubmed
Google scholar
|
[2] |
Atasoy D, Aponte Y, Su H H, Sternson S M (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci, 28: 7025–7030
|
[3] |
Atasoy D, Betley J N, Su H H, Sternson S M (2012). Deconstruction of a neural circuit for hunger. Nature, 488(7410): 172–177
CrossRef
Pubmed
Google scholar
|
[4] |
Atrens D M, Williams M P, Brady C J, Hunt G E (1982). Energy balance and hypothalamic self-stimulation. Behav Brain Res, 5(2): 131–142
CrossRef
Pubmed
Google scholar
|
[5] |
Avena N M, Rada P, Hoebel B G (2008). Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev, 32(1): 20–39
CrossRef
Pubmed
Google scholar
|
[6] |
Baicy K, London E D, Monterosso J, Wong M L, Delibasi T, Sharma A, Licinio J (2007). Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proc Natl Acad Sci USA, 104(46): 18276–18279
CrossRef
Pubmed
Google scholar
|
[7] |
Belgardt B F, Okamura T, Brüning J C (2009). Hormone and glucose signalling in POMC and AgRP neurons. J Physiol, 587(Pt 22): 5305–5314
CrossRef
Pubmed
Google scholar
|
[8] |
Berridge K C (2009). ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav, 97(5): 537–550
CrossRef
Pubmed
Google scholar
|
[9] |
Betley J N, Cao Z F, Ritola K D, Sternson S M (2013). Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell, 155(6): 1337–1350
CrossRef
Pubmed
Google scholar
|
[10] |
Bittencourt J C, Presse F, Arias C, Peto C, Vaughan J, Nahon J L, Vale W, Sawchenko P E (1992). The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol, 319(2): 218–245
CrossRef
Pubmed
Google scholar
|
[11] |
Blouet C, Schwartz G J (2010). Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res, 209(1): 1–12
CrossRef
Pubmed
Google scholar
|
[12] |
Borgland S L, Ungless M A, Bonci A (2010). Convergent actions of orexin/hypocretin and CRF on dopamine neurons: Emerging players in addiction. Brain Res, 1314: 139–144
CrossRef
Pubmed
Google scholar
|
[13] |
Boules M, Cusack B, Zhao L, Fauq A, McCormick D J, Richelson E (2000). A novel neurotensin peptide analog given extracranially decreases food intake and weight in rodents. Brain Res, 865(1): 35–44
CrossRef
Pubmed
Google scholar
|
[14] |
Cardinal R N, Parkinson J A, Hall J, Everitt B J (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev, 26(3): 321–352
CrossRef
Pubmed
Google scholar
|
[15] |
Carroll M E, France C P, Meisch R A (1979). Food deprivation increases oral and intravenous drug intake in rats. Science, 205(4403): 319–321
CrossRef
Pubmed
Google scholar
|
[16] |
Chung S, Hopf F W, Nagasaki H, Li C Y, Belluzzi J D, Bonci A, Civelli O (2009). The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci USA, 106(16): 6772–6777
CrossRef
Pubmed
Google scholar
|
[17] |
Ciriello J, McMurray J C, Babic T, de Oliveira C V (2003). Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Res, 991(1–2): 133–141
CrossRef
Pubmed
Google scholar
|
[18] |
Citri A, Malenka R C (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33(1): 18–41
CrossRef
Pubmed
Google scholar
|
[19] |
Coll A P, Farooqi I S, O’Rahilly S (2007). The hormonal control of food intake. Cell, 129(2): 251–262
CrossRef
Pubmed
Google scholar
|
[20] |
Coons E E, Cruce J A (1968). Lateral hypothalamus: food current intensity in maintaining self-stimulation of hunger. Science, 159(3819): 1117–1119
CrossRef
Pubmed
Google scholar
|
[21] |
Cota D, Barrera J G, Seeley R J (2006). Leptin in energy balance and reward: two faces of the same coin? Neuron, 51(6): 678–680
CrossRef
Pubmed
Google scholar
|
[22] |
Davis C, Strachan S, Berkson M (2004). Sensitivity to reward: implications for overeating and overweight. Appetite, 42(2): 131–138
CrossRef
Pubmed
Google scholar
|
[23] |
Dietrich M O, Horvath T L (2009). Feeding signals and brain circuitry. Eur J Neurosci, 30(9): 1688–1696
CrossRef
Pubmed
Google scholar
|
[24] |
Domingos A I, Vaynshteyn J, Voss H U, Ren X, Gradinaru V, Zang F, Deisseroth K, de Araujo I E, Friedman J (2011). Leptin regulates the reward value of nutrient. Nat Neurosci, 14(12): 1562–1568
CrossRef
Pubmed
Google scholar
|
[25] |
Dossat A M, Diaz R, Gallo L, Panagos A, Kay K, Williams D L (2013). Nucleus accumbens GLP-1 receptors influence meal size and palatability. Am J Physiol Endocrinol Metab, 304(12): E1314–E1320
CrossRef
Pubmed
Google scholar
|
[26] |
Dossat A M, Lilly N, Kay K, Williams D L (2011). Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci, 31(41): 14453–14457
CrossRef
Pubmed
Google scholar
|
[27] |
Dube M G, Kalra S P, Kalra P S (1999). Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res, 842(2): 473–477
CrossRef
Pubmed
Google scholar
|
[28] |
Everson S A, Maty S C, Lynch J W, Kaplan G A (2002). Epidemiologic evidence for the relation between socioeconomic status and depression, obesity, and diabetes. J Psychosom Res, 53(4): 891–895
CrossRef
Pubmed
Google scholar
|
[29] |
Fadel J, Deutch A Y (2002). Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience, 111(2): 379–387
CrossRef
Pubmed
Google scholar
|
[30] |
Farooqi I S, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher P C (2007). Leptin regulates striatal regions and human eating behavior. Science, 317(5843): 1355
CrossRef
Pubmed
Google scholar
|
[31] |
Feifel D, Goldenberg J, Melendez G, Shilling P D (2010). The acute and subchronic effects of a brain-penetrating, neurotensin-1 receptor agonist on feeding, body weight and temperature. Neuropharmacology, 58(1): 195–198
CrossRef
Pubmed
Google scholar
|
[32] |
Figlewicz D P (2003). Insulin, food intake, and reward. Semin Clin Neuropsychiatry, 8(2): 82–93
CrossRef
Pubmed
Google scholar
|
[33] |
Frank R A, Preshaw R L, Stutz R M, Valenstein E S (1982). Lateral hypothalamic stimulation: stimulus-bound eating and self-deprivation. Physiol Behav, 29(1): 17–21
CrossRef
Pubmed
Google scholar
|
[34] |
Fulton S, Pissios P, Manchon R P, Stiles L, Frank L, Pothos E N, Maratos-Flier E, Flier J S (2006). Leptin regulation of the mesoaccumbens dopamine pathway. Neuron, 51(6): 811–822
CrossRef
Pubmed
Google scholar
|
[35] |
Fulton S, Woodside B, Shizgal P (2000). Modulation of brain reward circuitry by leptin. Science, 287(5450): 125–128
CrossRef
Pubmed
Google scholar
|
[36] |
Geiger B M, Haburcak M, Avena N M, Moyer M C, Hoebel B G, Pothos E N (2009). Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience, 159(4): 1193–1199
CrossRef
Pubmed
Google scholar
|
[37] |
Georgescu D, Sears R M, Hommel J D, Barrot M, Bolanos C A, Marsh D J, Bednarek M A, Bibb J A, Maratos-Flier E, Nestler E J, DiLeone R J (2005). The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci, 25: 2933–2940
|
[38] |
Goforth P B, Leinninger G M, Patterson C M, Satin L S, Myers M G Jr. (2014) Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J Neurosci, 34: 11405–11415
|
[39] |
Goldstone A P (2006). The hypothalamus, hormones, and hunger: alterations in human obesity and illness. Prog Brain Res, 153: 57–73
CrossRef
Pubmed
Google scholar
|
[40] |
Gutierrez R, Lobo M K, Zhang F, de Lecea L (2011). Neural integration of reward, arousal, and feeding: recruitment of VTA, lateral hypothalamus, and ventral striatal neurons. IUBMB Life, 63(10): 824–830
CrossRef
Pubmed
Google scholar
|
[41] |
Hahn J D, Swanson L W (2010). Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Brain Res Rev, 64(1): 14–103
CrossRef
Pubmed
Google scholar
|
[42] |
Hahn J D, Swanson L W (2012). Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. J Comp Neurol, 520(9): 1831–1890
CrossRef
Pubmed
Google scholar
|
[43] |
Håkansson M, de Lecea L, Sutcliffe J G, Yanagisawa M, Meister B (1999). Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus. J Neuroendocrinol, 11(8): 653–663
CrossRef
Pubmed
Google scholar
|
[44] |
Haltia L T, Rinne J O, Merisaari H, Maguire R P, Savontaus E, Helin S, Någren K, Kaasinen V (2007). Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse, 61(9): 748–756
CrossRef
Pubmed
Google scholar
|
[45] |
Hansen S, Stanfield E J, Everitt B J (1981). The effects of lesions of lateral tegmental noradrenergic neurons on components of sexual behavior and pseudopregnancy in female rats. Neuroscience, 6(6): 1105–1117
CrossRef
Pubmed
Google scholar
|
[46] |
Harthoorn L F, Sañé A, Nethe M, Van Heerikhuize J J (2005). Multi-transcriptional profiling of melanin-concentrating hormone and orexin-containing neurons. Cell Mol Neurobiol, 25(8): 1209–1223
CrossRef
Pubmed
Google scholar
|
[47] |
Hoebel B G, Teitelbaum P (1962). Hypothalamic control of feeding and self-stimulation. Science, 135(3501): 375–377
CrossRef
Pubmed
Google scholar
|
[48] |
Hommel J D, Trinko R, Sears R M, Georgescu D, Liu Z W, Gao X B, Thurmon J J, Marinelli M, DiLeone R J (2006). Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron, 51(6): 801–810
CrossRef
Pubmed
Google scholar
|
[49] |
Horjales-Araujo E, Hellysaz A, Broberger C (2014). Lateral hypothalamic thyrotropin-releasing hormone neurons: distribution and relationship to histochemically defined cell populations in the rat. Neuroscience, 277: 87–102
CrossRef
Pubmed
Google scholar
|
[50] |
Horvath T L (2005). The hardship of obesity: a soft-wired hypothalamus. Nat Neurosci, 8(5): 561–565
CrossRef
Pubmed
Google scholar
|
[51] |
Ishiwari K, Weber S M, Mingote S, Correa M, Salamone J D (2004). Accumbens dopamine and the regulation of effort in food-seeking behavior: modulation of work output by different ratio or force requirements. Behav Brain Res, 151(1–2): 83–91
CrossRef
Pubmed
Google scholar
|
[52] |
Jennings J H, Rizzi G, Stamatakis A M, Ung R L, Stuber G D (2013). The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science, 341(6153): 1517–1521
CrossRef
Pubmed
Google scholar
|
[53] |
Jerlhag E, Janson A C, Waters S, Engel J A (2012). Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats. PLoS ONE, 7(11): e49557
CrossRef
Pubmed
Google scholar
|
[54] |
Johnson P M, Kenny P J (2010). Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats (vol 13, pg 635, 2010). Nat Neurosci, 13: 1033–1033
CrossRef
Google scholar
|
[55] |
Karnani M M, Szabó G, Erdélyi F, Burdakov D (2013). Lateral hypothalamic GAD65 neurons are spontaneously firing and distinct from orexin- and melanin-concentrating hormone neurons. J Physiol, 591(Pt 4): 933–953
CrossRef
Pubmed
Google scholar
|
[56] |
Kauer J A, Malenka R C (2007). Synaptic plasticity and addiction. Nat Rev Neurosci, 8(11): 844–858
CrossRef
Pubmed
Google scholar
|
[57] |
Kelley A E (2004). Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev, 27(8): 765–776
CrossRef
Pubmed
Google scholar
|
[58] |
Kelley A E, Baldo B A, Pratt W E (2005a). A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol, 493(1): 72–85
CrossRef
Pubmed
Google scholar
|
[59] |
Kelley A E, Baldo B A, Pratt W E, Will M J (2005b). Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav, 86(5): 773–795
CrossRef
Pubmed
Google scholar
|
[60] |
Kelley A E, Bless E P, Swanson C J (1996). Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats. J Pharmacol Exp Ther, 278(3): 1499–1507
Pubmed
|
[61] |
Kempadoo K A, Tourino C, Cho S L, Magnani F, Leinninger G M, Stuber G D, Zhang F, Myers M G, Deisseroth K, de Lecea L, Bonci A (2013) Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J Neurosci, 33: 7618–7626
|
[62] |
Kenny P J (2011a). Common cellular and molecular mechanisms in obesity and drug addiction. Nat Rev Neurosci, 12(11): 638–651
CrossRef
Pubmed
Google scholar
|
[63] |
Kenny P J (2011b). Reward mechanisms in obesity: new insights and future directions. Neuron, 69(4): 664–679
CrossRef
Pubmed
Google scholar
|
[64] |
Kokkotou E G, Tritos N A, Mastaitis J W, Slieker L, Maratos-Flier E (2001). Melanin-concentrating hormone receptor is a target of leptin action in the mouse brain. Endocrinology, 142(2): 680–686
CrossRef
Pubmed
Google scholar
|
[65] |
Krilowicz B L, Szymusiak R, McGinty D (1994). Regulation of posterior lateral hypothalamic arousal related neuronal discharge by preoptic anterior hypothalamic warming. Brain Res, 668(1–2): 30–38
CrossRef
Pubmed
Google scholar
|
[66] |
Lalonde R, Qian S (2007). Exploratory activity, motor coordination, and spatial learning in Mchr1 knockout mice. Behav Brain Res, 178(2): 293–304
CrossRef
Pubmed
Google scholar
|
[67] |
Land B B, Narayanan N S, Liu R J, Gianessi C A, Brayton C E, Grimaldi D M, Sarhan M, Guarnieri D J, Deisseroth K, Aghajanian G K, DiLeone R J (2014). Medial prefrontal D1 dopamine neurons control food intake. Nat Neurosci, 17(2): 248–253
CrossRef
Pubmed
Google scholar
|
[68] |
Leinninger G M, Jo Y H, Leshan R L, Louis G W, Yang H, Barrera J G, Wilson H, Opland D M, Faouzi M A, Gong Y, Jones J C, Rhodes C J, Chua S Jr, Diano S, Horvath T L, Seeley R J, Becker J B, Münzberg H, Myers M G Jr (2009). Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab, 10(2): 89–98
CrossRef
Pubmed
Google scholar
|
[69] |
Leinninger G M, Opland D M, Jo Y H, Faouzi M, Christensen L, Cappellucci L A, Rhodes C J, Gnegy M E, Becker J B, Pothos E N, Seasholtz A F, Thompson R C, Myers M G Jr (2011). Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab, 14(3): 313–323
CrossRef
Pubmed
Google scholar
|
[70] |
Lim B K, Huang K W, Grueter B A, Rothwell P E, Malenka R C (2012). Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature, 487(7406): 183–189
CrossRef
Pubmed
Google scholar
|
[71] |
Lu X Y, Bagnol D, Burke S, Akil H, Watson S J (2000). Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Horm Behav, 37(4): 335–344
CrossRef
Pubmed
Google scholar
|
[72] |
Ludwig D S, Tritos N A, Mastaitis J W, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier J S, Maratos-Flier E (2001). Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest, 107(3): 379–386
CrossRef
Pubmed
Google scholar
|
[73] |
Lutter M, Nestler E J (2009). Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr, 139(3): 629–632
CrossRef
Pubmed
Google scholar
|
[74] |
Marsh D J, Weingarth D T, Novi D E, Chen H Y, Trumbauer M E, Chen A S, Guan X M, Jiang M M, Feng Y, Camacho R E, Shen Z, Frazier E G, Yu H, Metzger J M, Kuca S J, Shearman L P, Gopal-Truter S, MacNeil D J, Strack A M, MacIntyre D E, Van der Ploeg L H, Qian S (2002). Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA, 99(5): 3240–3245
CrossRef
Pubmed
Google scholar
|
[75] |
McCarty C A, Kosterman R, Mason W A, McCauley E, Hawkins J D, Herrenkohl T I, Lengua L J (2009). Longitudinal associations among depression, obesity and alcohol use disorders in young adulthood. Gen Hosp Psychiatry, 31(5): 442–450
CrossRef
Pubmed
Google scholar
|
[76] |
Meister B (2007). Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav, 92(1–2): 263–271
CrossRef
Pubmed
Google scholar
|
[77] |
Menatti A R, Weeks J W, Levinson C A, McGowan M M (2013). Exploring the relationship between social anxiety and bulimic symptoms: mediational effects of perfectionism among females. Cognit Ther Res, 37(5): 914–922
CrossRef
Pubmed
Google scholar
|
[78] |
Miller N E (1960). Motivational effects of brain stimulation and drugs. Fed Proc, 19: 846–854
Pubmed
|
[79] |
Millington G W (2007). The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab (Lond), 4(1): 18
CrossRef
Pubmed
Google scholar
|
[80] |
Morrison S D, Mayer J (1957). Adipsia and aphagia in rats after lateral subthalamic lesions. Am J Physiol, 191(2): 248–254
Pubmed
|
[81] |
Morton G J, Cummings D E, Baskin D G, Barsh G S, Schwartz M W (2006). Central nervous system control of food intake and body weight. Nature, 443(7109): 289–295
CrossRef
Pubmed
Google scholar
|
[82] |
Morton G J, Meek T H, Schwartz M W (2014). Neurobiology of food intake in health and disease. Nat Rev Neurosci, 15(6): 367–378
CrossRef
Pubmed
Google scholar
|
[83] |
Morton T D, Salovitz B (2006). Evolving a theoretical model of child safety in maltreating families. Child Abuse Negl, 30(12): 1317–1327
CrossRef
Pubmed
Google scholar
|
[84] |
Murray S, Tulloch A, Gold M S, Avena N M (2014). Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nat Rev Endocrinol, 10(9): 540–552
CrossRef
Pubmed
Google scholar
|
[85] |
Musselman D L, Betan E, Larsen H, Phillips L S (2003). Relationship of depression to diabetes types 1 and 2: epidemiology, biology, and treatment. Biol Psychiatry, 54(3): 317–329
CrossRef
Pubmed
Google scholar
|
[86] |
Nahon J L, Presse F, Bittencourt J C, Sawchenko P E, Vale W (1989). The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology, 125(4): 2056–2065
CrossRef
Pubmed
Google scholar
|
[87] |
Narayanan N S, Guarnieri D J, DiLeone R J (2010). Metabolic hormones, dopamine circuits, and feeding. Front Neuroendocrinol, 31(1): 104–112
CrossRef
Pubmed
Google scholar
|
[88] |
Olds J, Milner P (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol, 47(6): 419–427
CrossRef
Pubmed
Google scholar
|
[89] |
Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor E C, Lüscher C (2014). Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature, 509(7501): 459–464
CrossRef
Pubmed
Google scholar
|
[90] |
Peciña S, Berridge K C (1995). Central enhancement of taste pleasure by intraventricular morphine. Neurobiology (Bp), 3(3-4): 269–280
Pubmed
|
[91] |
Peciña S, Berridge K C (2000). Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res, 863(1–2): 71–86
CrossRef
Pubmed
Google scholar
|
[92] |
Petrovich G D, Holland P C, Gallagher M (2005) Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J Neurosci, 25: 8295–8302
|
[93] |
Pfaffly J, Michaelides M, Wang G J, Pessin J E, Volkow N D, Thanos P K (2010). Leptin increases striatal dopamine D2 receptor binding in leptin-deficient obese (ob/ob) mice. Synapse, 64(7): 503–510
CrossRef
Pubmed
Google scholar
|
[94] |
Qu D, Ludwig D S, Gammeltoft S, Piper M, Pelleymounter M A, Cullen M J, Mathes W F, Przypek R, Kanarek R, Maratos-Flier E (1996). A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature, 380(6571): 243–247
CrossRef
Pubmed
Google scholar
|
[95] |
Rada P, Avena N M, Hoebel B G (2005). Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience, 134(3): 737–744
CrossRef
Pubmed
Google scholar
|
[96] |
Rosin D L, Weston M C, Sevigny C P, Stornetta R L, Guyenet P G (2003). Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J Comp Neurol, 465(4): 593–603
CrossRef
Pubmed
Google scholar
|
[97] |
Routtenberg A, Lindy J (1965). Effects of the availability of rewarding septal and hypothalamic stimulation on bar pressing for food under conditions of deprivation. J Comp Physiol Psychol, 60(2): 158–161
CrossRef
Pubmed
Google scholar
|
[98] |
Sahu A, Carraway R E, Wang Y P (2001). Evidence that neurotensin mediates the central effect of leptin on food intake in rat. Brain Res, 888(2): 343–347
CrossRef
Pubmed
Google scholar
|
[99] |
Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli R M, Tanaka H, Williams S C, Richardson J A, Kozlowski G P, Wilson S, Arch J R, Buckingham R E, Haynes A C, Carr S A, Annan R S, McNulty D E, Liu W S, Terrett J A, Elshourbagy N A, Bergsma D J, Yanagisawa M (1998). Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92(4): 573–585
CrossRef
Pubmed
Google scholar
|
[100] |
Salamone J D, Cousins M S, Bucher S (1994). Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res, 65(2): 221–229
CrossRef
Pubmed
Google scholar
|
[101] |
Sano H, Yokoi M (2007) Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons. J Neurosci, 27: 6948–6955
|
[102] |
Saper C B, Chou T C, Elmquist J K (2002). The need to feed: homeostatic and hedonic control of eating. Neuron, 36(2): 199–211
CrossRef
Pubmed
Google scholar
|
[103] |
Saper C B, Lu J, Chou T C, Gooley J (2005). The hypothalamic integrator for circadian rhythms. Trends Neurosci, 28(3): 152–157
CrossRef
Pubmed
Google scholar
|
[104] |
Sears R M, Liu R J, Narayanan N S, Sharf R, Yeckel M F, Laubach M, Aghajanian GK, DiLeone R J (2010) Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J Neurosci, 30: 8263–8273
|
[105] |
Shimada M, Tritos N A, Lowell B B, Flier J S, Maratos-Flier E (1998). Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature, 396(6712): 670–674
CrossRef
Pubmed
Google scholar
|
[106] |
Skibicka K P, Shirazi R H, Rabasa-Papio C, Alvarez-Crespo M, Neuber C, Vogel H, Dickson S L (2013). Divergent circuitry underlying food reward and intake effects of ghrelin: dopaminergic VTA-accumbens projection mediates ghrelin’s effect on food reward but not food intake. Neuropharmacology, 73: 274–283
CrossRef
Pubmed
Google scholar
|
[107] |
Skofitsch G, Jacobowitz D M, Zamir N (1985). Immunohistochemical localization of a melanin concentrating hormone-like peptide in the rat brain. Brain Res Bull, 15(6): 635–649
CrossRef
Pubmed
Google scholar
|
[108] |
Small D M, Jones-Gotman M, Dagher A (2003). Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage, 19(4): 1709–1715
CrossRef
Pubmed
Google scholar
|
[109] |
Spies G (1965). Food versus intracranial self-stimulation reinforcement in food-deprived rats. J Comp Physiol Psychol, 60(2): 153–157
CrossRef
Pubmed
Google scholar
|
[110] |
Stanley B G, Willett V L 3rd, Donias H W, Ha L H, Spears L C (1993). The lateral hypothalamus: a primary site mediating excitatory amino acid-elicited eating. Brain Res, 630(1–2): 41–49
CrossRef
Pubmed
Google scholar
|
[111] |
Sterling P, Eyer J (1988) Allostasis: a New Paradigm to Explain Arousal Pathology. John Wiley & Sons
|
[112] |
Sternson S M (2013). Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron, 77(5): 810–824
CrossRef
Pubmed
Google scholar
|
[113] |
Stratford T R, Kelley A E (1999). Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J Neurosci, 19(24): 11040–11048
Pubmed
|
[114] |
Stuber G D, Evans S B, Higgins M S, Pu Y, Figlewicz D P (2002). Food restriction modulates amphetamine-conditioned place preference and nucleus accumbens dopamine release in the rat. Synapse, 46(2): 83–90
CrossRef
Pubmed
Google scholar
|
[115] |
Stuber G D, Sparta D R, Stamatakis A M, van Leeuwen W A, Hardjoprajitno J E, Cho S, Tye K M, Kempadoo K A, Zhang F, Deisseroth K, Bonci A (2011). Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature, 475(7356): 377–380
CrossRef
Pubmed
Google scholar
|
[116] |
Teitelbaum P, Stellar E (1954). Recovery from the failure to eat produced by hypothalamic lesions. Science, 120(3126): 894–895
CrossRef
Pubmed
Google scholar
|
[117] |
Thanos P K, Michaelides M, Piyis Y K, Wang G J, Volkow N D (2008). Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with in-vivo muPET imaging ([11C] raclopride) and in-vitro ([3H] spiperone) autoradiography. Synapse, 62(1): 50–61
CrossRef
Pubmed
Google scholar
|
[118] |
Tomasi D, Wang G J, Wang R, Caparelli E C, Logan J, Volkow N D (2014). Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: Association to striatal D2/D3 receptors. Hum Brain Mapp
Pubmed
|
[119] |
Trifilieff P, Martinez D (2014). Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity. Neuropharmacology, 76(Pt B): 498–509
CrossRef
Pubmed
Google scholar
|
[120] |
Trojniar W, Plucińska K, Ignatowska-Jankowska B, Jankowski M (2007). Damage to the nucleus accumbens shell but not core impairs ventral tegmental area stimulation-induced feeding. J Physiol Pharmacol, 58(Suppl 3): 63–71
Pubmed
|
[121] |
Volkow N D, Wang G J, Baler R D (2011). Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci, 15(1): 37–46
CrossRef
Pubmed
Google scholar
|
[122] |
Volkow N D, Wang G J, Fowler J S, Telang F (2008). Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci, 363(1507): 3191–3200
CrossRef
Pubmed
Google scholar
|
[123] |
Volkow N D, Wang G J, Tomasi D, Baler R D (2013). Obesity and addiction: neurobiological overlaps. Obes Rev, 14(1): 2–18
CrossRef
Pubmed
Google scholar
|
[124] |
Volkow N D, Wise R A (2005). How can drug addiction help us understand obesity? Nat Neurosci, 8(5): 555–560
CrossRef
Pubmed
Google scholar
|
[125] |
Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell B B (2011). Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron, 71(1): 142–154
CrossRef
Pubmed
Google scholar
|
[126] |
Wang G J, Volkow N D, Logan J, Pappas N R, Wong C T, Zhu W, Netusil N, Fowler J S (2001). Brain dopamine and obesity. Lancet, 357(9253): 354–357
CrossRef
Pubmed
Google scholar
|
[127] |
Wang L, Shen M, Yu Y, Tao Y, Zheng P, Wang F, Ma L (2014). Optogenetic activation of GABAergic neurons in the nucleus accumbens decreases the activity of the ventral pallidum and the expression of cocaine-context-associated memory. Int J Neuropsychopharmacol, 17(5): 753–763
CrossRef
Pubmed
Google scholar
|
[128] |
Willie J T, Chemelli R M, Sinton C M, Yanagisawa M (2001). To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci, 24(1): 429–458
CrossRef
Pubmed
Google scholar
|
[129] |
Wise R A (1974). Lateral hypothalamic electrical stimulation: does it make animals ‘hungry’? Brain Res, 67(2): 187–209
CrossRef
Pubmed
Google scholar
|
[130] |
Wise R A (2006). Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci, 361(1471): 1149–1158
CrossRef
Pubmed
Google scholar
|
[131] |
Yamanaka A, Beuckmann C T, Willie J T, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, Sakurai T (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron, 38(5): 701–713
CrossRef
Pubmed
Google scholar
|
[132] |
Zahm D S, Brog J S (1992). On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience, 50(4): 751–767
CrossRef
Pubmed
Google scholar
|
[133] |
Zheng H, Corkern M, Stoyanova I, Patterson L M, Tian R, Berthoud H R (2003). Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. Am J Physiol Regul Integr Comp Physiol, 284(6): R1436–R1444
Pubmed
|
/
〈 | 〉 |