REVIEW

Microbial enzyme systems for lignin degradation and their transcriptional regulation

  • Takanori FURUKAWA ,
  • Fatai Olumide BELLO ,
  • Louise HORSFALL
Expand
  • School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK

Received date: 26 Aug 2014

Accepted date: 28 Sep 2014

Published date: 13 Jan 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Lignocellulosic biomass is the most abundant renewable resource in nature and has received considerable attention as one of the most promising alternatives to oil resources for the provision of energy and certain raw materials. The phenolic polymer lignin is the second most abundant constituent of this biomass resource and has been shown to have the potential to be converted into industrially important aromatic chemicals after degradation. However, due to its chemical and structural nature, it exhibits high resistance toward mechanical, chemical, and biological degradation, and this causes a major obstacle for achieving efficient conversion of lignocellulosic biomass. In nature, lignin-degrading microorganisms have evolved unique extracellular enzyme systems to decompose lignin using radical mediated oxidative reactions. These microorganisms produce a set of different combinations of enzymes with multiple isozymes and isoforms by responding to various environmental stimuli such as nutrient availability, oxygen concentration and temperature, which are thought to enable effective decomposition of the lignin in lignocellulosic biomass. In this review, we present an overview of the microbial ligninolytic enzyme systems including general molecular aspects, structural features, and systematic differences in each microorganism. We also describe the gene expression pattern and the transcriptional regulation mechanisms of each ligninolytic enzyme with current data.

Cite this article

Takanori FURUKAWA , Fatai Olumide BELLO , Louise HORSFALL . Microbial enzyme systems for lignin degradation and their transcriptional regulation[J]. Frontiers in Biology, 2014 , 9(6) : 448 -471 . DOI: 10.1007/s11515-014-1336-9

1
Adler E (1977). Lignin chemistry—past, present and future. Wood Sci Technol, 11(3): 169–218

DOI

2
Ahmad M, Roberts J N, Hardiman E M, Singh R, Eltis L D, Bugg T D (2011). Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry, 50(23): 5096–5107

DOI PMID

3
Ahmad M, Taylor C R, Pink D, Burton K, Eastwood D, Bending G D, Bugg T D (2010). Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol Biosyst, 6(5): 815–821

DOI PMID

4
Akin D E, Morrison Iii W H, Rigsby L L, Gamble G R, Sethuraman A, Eriksson K E L (1996). Biological delignification of plant components by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Anim Feed Sci Technol, 63(1–4): 305–321

DOI

5
Alvarez J M, Canessa P, Mancilla R A, Polanco R, Santibáñez P A, Vicuña R (2009). Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor. Fungal Genet Biol, 46(1): 104–111

DOI PMID

6
Andreu G, Vidal T (2011). Effects of laccase-natural mediator systems on kenaf pulp. Bioresour Technol, 102(10): 5932–5937

DOI PMID

7
Antoni D, Zverlov V V, Schwarz W H (2007). Biofuels from microbes. Appl Microbiol Biotechnol, 77(1): 23–35

DOI PMID

8
Arantes V, Jellison J, Goodell B (2012). Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol, 94(2): 323–338

DOI PMID

9
Asgher M, Bhatti H N, Ashraf M, Legge R L (2008). Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation, 19(6): 771–783

DOI PMID

10
Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I (2011). Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One, 6(10): e25724

DOI PMID

11
Azadi P, Inderwildi O R, Farnood R, King D A (2013). Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew Sustain Energy Rev, 21: 506–523

DOI

12
Bajpai P (2004). Biological bleaching of chemical pulps. Crit Rev Biotechnol, 24(1): 1–58

DOI PMID

13
Bajpai P, Anand A, Bajpai P K (2006). Bleaching with lignin-oxidizing enzymes. Biotechnol Annu Rev, 12: 349–378

DOI PMID

14
Balakshin Mikhail Y, Capanema Ewellyn A, Chang H (2007). MWL fraction with a high concentration of lignin-carbohydrate linkages: Isolation and 2D NMR spectroscopic analysis. Holzforschung, 61(1): 1–7

DOI

15
Baldrian P (2006). Fungal laccases- occurrence and properties. FEMS Microbiol Rev, 30(2): 215–242

DOI PMID

16
Banci L, Camarero S, Martínez A T, Martínez M J, Pérez-Boada M, Pierattelli R, Ruiz-Dueñas F J (2003). NMR study of manganese(II) binding by a new versatile peroxidase from the white-rot fungus Pleurotus eryngii. J Biol Inorg Chem, 8(7): 751–760

DOI PMID

17
Bao W, Fukushima Y, Jensen K A Jr, Moen M A, Hammel K E (1994). Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett, 354(3): 297–300

DOI PMID

18
Beedlow P A, Tingey D T, Phillips D L, Hogsett W E, Olszyk D M (2004). Rising atmospheric CO2 and carbon sequestration in forests. Front Ecol Environ, 2: 315–322

19
Belinky P A, Flikshtein N, Lechenko S, Gepstein S, Dosoretz C G (2003). Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol, 69(11): 6500–6506

DOI PMID

20
Bindoff N L, Stott P A, AchutaRao K M, Allen M R, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov I I, Overland J, Perlwitz J, Sebbari R, Zhang X (2013). Detection and Attribution of Climate Change: from Global to Regional. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M (eds.) . Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, 867–952

21
Blanchette R A (1995). Degradation of the lignocellulose complex in wood. Can J Bot, 73(S1): 999–1010

DOI

22
Blanchette Robert A, Burnes Todd A, Eerdmans Marjorie M, Akhtar M (1992). Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung, 46(2): 109–116

DOI

23
Boerjan W, Ralph J, Baucher M (2003). Lignin biosynthesis. Annu Rev Plant Biol, 54(1): 519–546

DOI PMID

24
Bogan B W, Schoenike B, Lamar R T, Cullen D (1996). Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol, 62(10): 3697–3703

PMID

25
Bourbonnais R, Paice M G (1990). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett, 267(1): 99–102

DOI PMID

26
Bozell J J, Petersen G R (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem, 12(4): 539

DOI

27
Brown J A, Li D, Alic M, Gold M H (1993). Heat Shock induction of manganese peroxidase gene transcription in Phanerochaete chrysosporium. Appl Environ Microbiol, 59(12): 4295–4299

PMID

28
Brown M E, Barros T, Chang M C (2012). Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol, 7(12): 2074–2081

DOI PMID

29
Bugg T D, Ahmad M, Hardiman E M, Rahmanpour R (2011a). Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep, 28(12): 1883–1896

DOI PMID

30
Bugg T D, Ahmad M, Hardiman E M, Singh R (2011b). The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol, 22(3): 394–400

DOI PMID

31
Call H P, Mücke I (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J Biotechnol, 53(2–3): 163–202

DOI

32
Camarero S, Ibarra D, Martínez M J, Martínez A T (2005). Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol, 71(4): 1775–1784

DOI PMID

33
Cañas A I, Camarero S (2010). Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv, 28(6): 694–705

DOI PMID

34
Canessa P, Alvarez J M, Polanco R, Bull P, Vicuña R (2008). The copper-dependent ACE1 transcription factor activates the transcription of the mco1 gene from the basidiomycete Phanerochaete chrysosporium. Microbiology, 154(Pt 2): 491–499

DOI PMID

35
Chen F, Dixon R A (2007). Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol, 25(7): 759–761

DOI PMID

36
Choinowski T, Blodig W, Winterhalter K H, Piontek K (1999). The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cbeta of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol, 286(3): 809–827

DOI PMID

37
Claus H (2003). Laccases and their occurrence in prokaryotes. Arch Microbiol, 179(3): 145–150

PMID

38
Claus H (2004). Laccases: structure, reactions, distribution. Micron, 35(1–2): 93–96

DOI PMID

39
Cohen R, Hadar Y, Yarden O (2001). Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ Microbiol, 3(5): 312–322

DOI PMID

40
Cohen R, Yarden O, Hadar Y (2002). Lignocellulose affects Mn2+ regulation of peroxidase transcript levels in solid-state cultures of Pleurotus ostreatus. Appl Environ Microbiol, 68(6): 3156–3158

DOI PMID

41
Colao M Ch, Garzillo A M, Buonocore V, Schiesser A, Ruzzi M (2003). Primary structure and transcription analysis of a laccase-encoding gene from the basidiomycete Trametes trogii. Appl Microbiol Biotechnol, 63(2): 153–158

DOI PMID

42
Collins P J, Dobson A (1997). Regulation of laccase gene transcription in trametes versicolor. Appl Environ Microbiol, 63(9): 3444–3450

PMID

43
Collins P J, O’Brien M M, Dobson A D (1999). Cloning and characterization of a cDNA encoding a novel extracellular peroxidase from trametes versicolor. Appl Environ Microbiol, 65(3): 1343–1347

PMID

44
Colpa D I, Fraaije M W, van Bloois E (2014). DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol, 41(1): 1–7

DOI PMID

45
Conesa A, Punt P J, van den Hondel C A (2002). Fungal peroxidases: molecular aspects and applications. J Biotechnol, 93(2): 143–158

DOI PMID

46
Crestini C, Crucianelli M, Orlandi M, Saladino R (2010). Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catal Today, 156(1–2): 8–22

DOI

47
Crestini C, Melone F, Sette M, Saladino R (2011). Milled wood lignin: a linear oligomer. Biomacromolecules, 12(11): 3928–3935

DOI PMID

48
Cullen D (1997). Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol, 53(2-3): 273–289

DOI PMID

49
Dhawale S S, Lane A C (1993). Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res, 21(24): 5537–5546

DOI PMID

50
Doherty W O S, Mousavioun P, Fellows C M (2011). Value-adding to cellulosic ethanol: Lignin polymers. Ind Crops Prod, 33(2): 259–276

DOI

51
Dooley D M, Rawlings J, Dawson J H, Stephens P J, Andreasson L E, Malmstrom B G, Gray H B (1979). Spectroscopic studies of Rhus vernicifera and Polyporus versicolor laccase. Electronic structures of the copper sites. J Am Chem Soc, 101(17): 5038–5046

DOI

52
Dowzer C E, Kelly J M (1991). Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol, 11(11): 5701–5709

PMID

53
Doyle W A, Blodig W, Veitch N C, Piontek K, Smith A T (1998). Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry, 37(43): 15097–15105

DOI PMID

54
Drysdale M R, Kolze S E, Kelly J M (1993). The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene, 130(2): 241–245

DOI PMID

55
Dunford H B (1999). Heme peroxidases, New York, Wiley

56
Dusselier M, Mascal M, Sels B F (2014). Top chemical opportunities from carbohydrate biomass: A chemist’s view of the biorefinery. Top Curr Chem, 353: 1–40

57
Dwivedi U N, Singh P, Pandey V P, Kumar A (2011). Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal, B Enzym, 68: 117–128

58
Edwards S L, Raag R, Wariishi H, Gold M H, Poulos T L (1993). Crystal structure of lignin peroxidase. Proc Natl Acad Sci U S A, 90(2): 750–754

DOI PMID

59
Eggert C, Temp U, Dean J F D, Eriksson K E L (1996). A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett, 391(1–2): 144–148

DOI PMID

60
Eggert C, Temp U, Eriksson K E (1997). Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett, 407(1): 89–92

DOI PMID

61
Elisashvili V, Kachlishvili E (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J Biotechnol, 144(1): 37–42

DOI PMID

62
Enguita F J, Martins L O, Henriques A O, Carrondo M A (2003). Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem, 278(21): 19416–19425

DOI PMID

63
Eriksson K E L B R A, Ander P (1990). Microbial and Enzymatic Degradation of Wood and Wood Components. Berlin, Springer, 1–72

64
Ertan H, Siddiqui K S, Muenchhoff J, Charlton T, Cavicchioli R (2012). Kinetic and thermodynamic characterization of the functional properties of a hybrid versatile peroxidase using isothermal titration calorimetry: Insight into manganese peroxidase activation and lignin peroxidase inhibition. Biochimie, 94(5): 1221–1231

DOI PMID

65
Fackler K, Gradinger C, Hinterstoisser B, Messner K, Schwanninger M (2006). Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme Microb Technol, 39(7): 1476–1483

DOI

66
Faraco V, Giardina P, Sannia G (2003). Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology, 149(Pt 8): 2155–2162

DOI PMID

67
Faraco V, Piscitelli A, Sannia G, Giardina P (2006). Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microb Biot, 23(6): 889–893

DOI

68
Fernández-Fueyo E, Castanera R, Ruiz-Dueñas F J, López-Lucendo M F, Ramírez L, Pisabarro A G, Martínez A T (2014a). Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet Biol, (In press)

DOI PMID

69
Fernandez-Fueyo E, Ruiz-Dueñas F J, Ferreira P, Floudas D, Hibbett D S, Canessa P, Larrondo L F, James T Y, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Watanabe T, Ryu J S, Kubicek C P, Schmoll M, Gaskell J, Hammel K E, St John F J, Vanden Wymelenberg A, Sabat G, Splinter BonDurant S, Syed K, Yadav J S, Doddapaneni H, Subramanian V, Lavín J L, Oguiza J A, Perez G, Pisabarro A G, Ramirez L, Santoyo F, Master E, Coutinho P M, Henrissat B, Lombard V, Magnuson J K, Kües U, Hori C, Igarashi K, Samejima M, Held B W, Barry K W, LaButti K M, Lapidus A, Lindquist E A, Lucas S M, Riley R, Salamov A A, Hoffmeister D, Schwenk D, Hadar Y, Yarden O, de Vries R P, Wiebenga A, Stenlid J, Eastwood D, Grigoriev I V, Berka R M, Blanchette R A, Kersten P, Martinez A T, Vicuna R, Cullen D (2012). Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci U S A, 109(14): 5458–5463

PMID

70
Fernández-Fueyo E, Ruiz-Dueñas F J, Martínez M J, Romero A, Hammel K E, Medrano F J, Martínez A T (2014b). Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. Biotechnol Biofuels, 7(1): 2

DOI PMID

71
Fillat A, Colom J F, Vidal T (2010). A new approach to the biobleaching of flax pulp with laccase using natural mediators. Bioresour Technol, 101(11): 4104–4110

DOI PMID

72
FitzPatrick M, Champagne P, Cunningham M F, Whitney R A (2010). A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol, 101(23): 8915–8922

DOI PMID

73
Floudas D, Binder M, Riley R, Barry K, Blanchette R A, Henrissat B, Martínez A T, Otillar R, Spatafora J W, Yadav J S, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho P M, de Vries R P, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens J A, Kallen N, Kersten P, Kohler A, Kües U, Kumar T K, Kuo A, LaButti K, Larrondo L F, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin D J, Morgenstern I, Morin E, Murat C, Nagy L G, Nolan M, Ohm R A, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas F J, Sabat G, Salamov A, Samejima M, Schmutz J, Slot J C, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood D C, Martin F, Cullen D, Grigoriev I V, Hibbett D S (2012). The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336(6089): 1715–1719

DOI PMID

74
Galhaup C, Goller S, Peterbauer C K, Strauss J, Haltrich D (2002). Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology, 148(Pt 7): 2159–2169

PMID

75
Galliano H, Gas G, Seris J L, Boudet A M (1991). Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb Technol, 13(6): 478–482

DOI

76
Gardner K H, Blackwell J (1974). The structure of native cellulose. Biopolymers, 13(10): 1975–2001

DOI

77
Gaskell J, Stewart P, Kersten P J, Covert S F, Reiser J, Cullen D (1994). Establishment of genetic linkage by allele-specific polymerase chain reaction: application to the lignin peroxidase gene family of Phanerochaete chrysosporium. Biotechnology (N Y), 12(13): 1372–1375

DOI PMID

78
Gasser C A, Hommes G, Schäffer A, Corvini P F (2012). Multi-catalysis reactions: new prospects and challenges of biotechnology to valorize lignin. Appl Microbiol Biotechnol, 95(5): 1115–1134

DOI PMID

79
Gianfreda L, Xu F, Bollag J M (1999). Laccases: A useful group of oxidoreductive enzymes. Bioremediat J, 3(1): 1–25

DOI

80
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010). Laccases: a never-ending story. Cell Mol Life Sci, 67(3): 369–385

DOI PMID

81
Gilbertson R L (1980). Wood-rotting fungi of North-America. Mycologia, 72(1): 1–49

DOI

82
Glenn J K, Akileswaran L, Gold M H (1986). Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys, 251(2): 688–696

DOI PMID

83
Glenn J K, Gold M H (1985). Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys, 242(2): 329–341

DOI PMID

84
Goblirsch B, Kurker R C, Streit B R, Wilmot C M, DuBois J L (2011). Chlorite dismutases, DyPs, and EfeB: 3 microbial heme enzyme families comprise the CDE structural superfamily. J Mol Biol, 408(3): 379–398

DOI PMID

85
Godfrey B J, Mayfield M B, Brown J A, Gold M H (1990). Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene, 93(1): 119–124

DOI PMID

86
Gold M H, Alic M (1993). Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev, 57(3): 605–622

PMID

87
Gold M H, Kuwahara M, Chiu A A, Glenn J K (1984). Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys, 234(2): 353–362

DOI PMID

88
Golovleva L A, Leontievsky A A, Maltseva O V, Myasoedova N M (1993). Ligninolytic enzymes of the fungus Panus tigrinus 8⁄18: Biosynthesis, purification and properties. J Biotechnol, 30(1): 71–77

DOI

89
Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997). Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol, 53(2–3): 133–162

DOI

90
Guillén F, Martínez A T, Martínez M J (1992). Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem, 209(2): 603–611

DOI PMID

91
Gupta R, Mehta G, Khasa Y P, Kuhad R C (2011). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22(4): 797–804

DOI PMID

92
Gutiérrez A, del Río J C, Martínez-Iñigo M J, Martínez M J, Martínez A T (2002). Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes. Appl Environ Microbiol, 68(3): 1344–1350

DOI PMID

93
Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M F, Lidén G, Zacchi G (2006). Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol, 24(12): 549–556

DOI PMID

94
Hakala T K, Hildén K, Maijala P, Olsson C, Hatakka A (2006). Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol, 73(4): 839–849

DOI PMID

95
Hamelinck C N, Hooijdonk G, Faaij A P C (2005). Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy, 28(4): 384–410

DOI

96
Hammel K E, Jensen K A Jr, Mozuch M D, Landucci L L, Tien M, Pease E A (1993). Ligninolysis by a purified lignin peroxidase. J Biol Chem, 268(17): 12274–12281

PMID

97
Hatakka A (2001) Biodegradation of Lignin. In: Hofrichter M,Steinbuchel A (eds.). (ed) Biopolymers, Wiley-VCH Verlag GmbH & Co. KGaA

98
Hatti-Kaul R, Törnvall U, Gustafsson L, Börjesson P (2007). Industrial biotechnology for the production of bio-based chemicals—a cradle-to-grave perspective. Trends Biotechnol, 25(3): 119–124

DOI PMID

99
Heinfling A, Ruiz-Dueñas F J, Martínez M J, Bergbauer M, Szewzyk U, Martínez A T (1998). A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett, 428(3): 141–146

DOI PMID

100
Hildén K, Mäkelä M R, Steffen K T, Hofrichter M, Hatakka A, Archer D B, Lundell T K (2014). Biochemical and molecular characterization of an atypical manganese peroxidase of the litter-decomposing fungus Agrocybe praecox. Fungal Genet Biol, (In press)

DOI PMID

101
Hildén K, Martinez A T, Hatakka A, Lundell T (2005). The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol, 42(5): 403–419

DOI PMID

102
Himmel M E, Ding S Y, Johnson D K, Adney W S, Nimlos M R, Brady J W, Foust T D (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813): 804–807

DOI PMID

103
Holzbaur E L, Andrawis A, Tien M (1988). Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun, 155(2): 626–633

DOI PMID

104
Hon D S (1994). Cellulose: a random walk along its historical path. Cellulose, 1(1): 1–25

DOI

105
Husain M, Husain Q (2007). Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: A Review. Crit Rev Environ Sci Technol, 38(1): 1–42

DOI

106
Janusz G, Kucharzyk K H, Pawlik A, Staszczak M, Paszczynski A J (2013). Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol, 52(1): 1–12

DOI PMID

107
Jeffries T W, Choi S, Kirk T K (1981). Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol, 42(2): 290–296

PMID

108
Johansson T, Nyman P O, Cullen D (2002). Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572. Appl Environ Microbiol, 68(4): 2077–2080

DOI PMID

109
Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2005). Mn(2+) is dispensable for the production of active MnP2 by Pleurotus ostreatus. Biochem Biophys Res Commun, 327(3): 871–876

DOI PMID

110
Kamm B, Kamm M (2004). Principles of biorefineries. Appl Microbiol Biotechnol, 64(2): 137–145

DOI PMID

111
Kersten P, Cullen D (2007). Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol, 44(2): 77–87

DOI PMID

112
Kersten P, Cullen D (2014). Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. Fungal Genet Biol, (In press)

DOI PMID

113
Kersten P J (1990). Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Natl Acad Sci U S A, 87(8): 2936–2940

DOI PMID

114
Kersten P J, Kirk T K (1987). Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol, 169(5): 2195–2201

PMID

115
Kim S J, Ishikawa K, Hirai M, Shoda M (1995). Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng, 79(6): 601–607

DOI

116
Kim S J, Shoda M (1999). Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Appl Environ Microbiol, 65(3): 1029–1035

PMID

117
Kim Y, Yeo S, Kum J, Song H G, Choi H T (2005). Cloning of a manganese peroxidase cDNA gene repressed by manganese in Trametes versicolor. J Microbiol, 43(6): 569–571

PMID

118
Kirk T K, Croan S, Tien M, Murtagh K E, Farrell R L (1986). Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol, 8(1): 27–32

DOI

119
Kirk T K, Farrell R L (1987). Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol, 41(1): 465–505

DOI PMID

120
Kishi K, Kusters-van Someren M, Mayfield M B, Sun J, Loehr T M, Gold M H (1996). Characterization of manganese(II) binding site mutants of manganese peroxidase. Biochemistry, 35(27): 8986–8994

DOI PMID

121
Kishi K, Wariishi H, Marquez L, Dunford H B, Gold M H (1994). Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry, 33(29): 8694–8701

DOI PMID

122
Kleinert M, Barth T (2008). Phenols from Lignin. Chem Eng Technol, 31(5): 736–745

DOI

123
Koenig A B, Sleighter R L, Salmon E, Hatcher P G (2010). NMR structural characterization of Quercus alba (White Oak) degraded by the brown rot fungus, Laetiporus sulphureus. J Wood Chem Technol, 30(1): 61–85

DOI

124
Kolpak F J, Blackwell J (1976). Determination of the structure of cellulose II. Macromolecules, 9(2): 273–278

DOI PMID

125
Kramer K J, Kanost M R, Hopkins T L, Jiang H, Zhu Y C, Xu R, Kerwin J L, Turecek F (2001). Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron, 57(2): 385–392

DOI

126
Kuan I C, Johnson K A, Tien M (1993). Kinetic analysis of manganese peroxidase. The reaction with manganese complexes. J Biol Chem, 268(27): 20064–20070

PMID

127
Kunamneni A, Camarero S, García-Burgos C, Plou F J, Ballesteros A, Alcalde M (2008). Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact, 7(1): 32

DOI PMID

128
Kuwahara M, Glenn J K, Morgan M A, Gold M H (1984). Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett, 169(2): 247–250

DOI

129
Levasseur A, Lomascolo A, Chabrol O, Ruiz-Dueñas F J, Boukhris-Uzan E, Piumi F, Kües U, Ram A F, Murat C, Haon M, Benoit I, Arfi Y, Chevret D, Drula E, Kwon M J, Gouret P, Lesage-Meessen L, Lombard V, Mariette J, Noirot C, Park J, Patyshakuliyeva A, Sigoillot J C, Wiebenga A, Wösten H A, Martin F, Coutinho P M, de Vries R P, Martinez A T, Klopp C, Pontarotti P, Henrissat B, Record E (2014). The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genomics, 15(1): 486

DOI PMID

130
Levin L, Forchiassin F, Ramos A M (2002). Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia, 94(3): 377–383

DOI PMID

131
Li D, Alic M, Brown J A, Gold M H (1995). Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Appl Environ Microbiol, 61(1): 341–345

PMID

132
Li D, Li N, Ma B, Mayfield M B, Gold M H (1999). Characterization of genes encoding two manganese peroxidases from the lignin-degrading fungus Dichomitus squalens(1). Biochim Biophys Acta, 1434(2): 356–364

DOI PMID

133
Lieth H (1975) Primary Production of the Major Vegetation Units of the World. In: Lieth H, Whittaker R (eds.). Primary Productivity of the Biosphere (Ecological Studies), Springer Berlin Heidelberg, 203–215

134
Liu S, Lu H, Hu R, Shupe A, Lin L, Liang B (2012). A sustainable woody biomass biorefinery. Biotechnol Adv, 30(4): 785–810

DOI PMID

135
Liu X, Du Q, Wang Z, Zhu D, Huang Y, Li N, Wei T, Xu S, Gu L (2011). Crystal structure and biochemical features of EfeB/YcdB from Escherichia coli O157: ASP235 plays divergent roles in different enzyme-catalyzed processes. J Biol Chem, 286(17): 14922–14931

DOI PMID

136
Lobos S, Larraín J, Salas L, Cullen D, Vicuña R (1994). Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology, 140(Pt 10): 2691–2698

DOI PMID

137
Lundell T K, Mäkelä M R, Hildén K (2010). Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol, 50(1): 5–20

DOI PMID

138
Lynd L R, Weimer P J, van Zyl W H, Pretorius I S (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 66(3): 506–577

DOI PMID

139
Ma B, Mayfield M B, Godfrey B J, Gold M H (2004). Novel promoter sequence required for manganese regulation of manganese peroxidase isozyme 1 gene expression in Phanerochaete chrysosporium. Eukaryot Cell, 3(3): 579–588

DOI PMID

140
Ma B, Mayfield M B, Gold M H (2001). The green fluorescent protein gene functions as a reporter of gene expression in Phanerochaete chrysosporium. Appl Environ Microbiol, 67(2): 948–955

DOI PMID

141
Malkin R, Malmström B G (1970). The state and function of copper in biological systems. Adv Enzymol Relat Areas Mol Biol, 33: 177–244

PMID

142
Mancilla R A, Canessa P, Manubens A, Vicuña R (2010). Effect of manganese on the secretion of manganese-peroxidase by the basidiomycete Ceriporiopsis subvermispora. Fungal Genet Biol, 47(7): 656–661

DOI PMID

143
Mansur M, Suárez T, González A E (1998). Differential gene expression in the laccase gene family from basidiomycete I-62 (CECT 20197). Appl Environ Microbiol, 64(2): 771–774

PMID

144
Manubens A, Avila M, Canessa P, Vicuña R (2003). Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora. Curr Genet, 43(6): 433–438

DOI PMID

145
Manubens A, Canessa P, Folch C, Avila M, Salas L, Vicuña R (2007). Manganese affects the production of laccase in the basidiomycete Ceriporiopsis subvermispora. FEMS Microbiol Lett, 275(1): 139–145

DOI PMID

146
Martínez A T (2002). Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol, 30(4): 425–444

DOI

147
Martínez A T, Rencoret J, Nieto L, Jiménez-Barbero J, Gutiérrez A, del Río J C (2011). Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol, 13(1): 96–107

DOI PMID

148
Martínez A T, Speranza M, Ruiz-Dueñas F J, Ferreira P, Camarero S, Guillén F, Martínez M J, Gutiérrez A, del Río J C (2005). Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol, 8(3): 195–204

PMID

149
Martinez D, Larrondo L F, Putnam N, Gelpke M D, Huang K, Chapman J, Helfenbein K G, Ramaiya P, Detter J C, Larimer F, Coutinho P M, Henrissat B, Berka R, Cullen D, Rokhsar D (2004). Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol, 22(6): 695–700

DOI PMID

150
Martinez M J, Ruiz-Dueñas F J, Guillén F, Martínez A T (1996). Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem, 237(2): 424–432

DOI PMID

151
Masai E, Katayama Y, Fukuda M (2007). Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem, 71(1): 1–15

DOI PMID

152
Mayer A M, Staples R C (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60(6): 551–565

DOI PMID

153
Menon V, Rao M (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog Energ Combust, 38(4): 522–550

DOI

154
Mester T, de Jong E, Field J A (1995). Manganese regulation of veratryl alcohol in white rot fungi and its indirect effect on lignin peroxidase. Appl Environ Microbiol, 61(5): 1881–1887

PMID

155
Mester T, Field J A (1998). Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem, 273(25): 15412–15417

DOI PMID

156
Miyazaki K (2005). A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles, 9(6): 415–425

DOI PMID

157
Morales M, Mate M J, Romero A, Martinez M J, Martínez A T, Ruiz-Dueñas F J (2012). Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase. J Biol Chem, 287(49): 41053–41067

DOI PMID

158
Moreira P R, Duez C, Dehareng D, Antunes A, Almeida-Vara E, Frère J M, Malcata F X, Duarte J C (2005). Molecular characterisation of a versatile peroxidase from a Bjerkandera strain. J Biotechnol, 118(4): 339–352

DOI PMID

159
Morozova O V, Shumakovich G P, Gorbacheva M A, Shleev S V, Yaropolov A I (2007). “Blue” laccases. Biochemistry (Mosc), 72(10): 1136–1150

DOI PMID

160
Mouso N, Papinutti L, Forchiassin F (2003). Combined effect of copper and initial pH of the culture on production of laccase and manganese peroxidase by Stereum hirsutum (Willd) Pers. Rev Iberoam Micol, 20(4): 176–178

PMID

161
Octave S, Thomas D (2009). Biorefinery: Toward an industrial metabolism. Biochimie, 91(6): 659–664

DOI PMID

162
Ogola H J, Kamiike T, Hashimoto N, Ashida H, Ishikawa T, Shibata H, Sawa Y (2009). Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol, 75(23): 7509–7518

DOI PMID

163
Ohara H (2003). Biorefinery. Appl Microbiol Biotechnol, 62(5–6): 474–477

DOI PMID

164
Osma J F, Toca-Herrera J L, Rodríguez-Couto S (2010). Uses of laccases in the food industry. Enzyme Res, 2010: 918761

DOI PMID

165
Otjen L, Blanchette R, Effland M, Leatham G (1987). Assessment of 30 White Rot Basidiomycetes for Selective Lignin Degradation Holzforschung- International Journal of the Biology, Chemistry, Physics and Technology of Wood, pp. 343

166
Paliwal R, Rawat A P, Rawat M, Rai J P (2012). Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol, 167(7): 1865–1889

DOI PMID

167
Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol, 66(3): 920–924

DOI PMID

168
Paszczynski A, Huynh V B, Crawford R (1985). Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett, 29: 37–41

DOI

169
Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G (2013). Hemicellulose biosynthesis. Planta, 238(4): 627–642

DOI PMID

170
Pauly M, Keegstra K (2008). Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J, 54(4): 559–568

DOI PMID

171
Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol, 5(2): 53–63

DOI PMID

172
Pérez-Boada M, Ruiz-Dueñas F J, Pogni R, Basosi R, Choinowski T, Martínez M J, Piontek K, Martínez A T (2005). Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol, 354(2): 385–402

DOI PMID

173
Périé F H, Gold M H (1991). Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol, 57(8): 2240–2245

PMID

174
Peterson T W a G (2004). Top value added chemicals from biomass. no DOE/GO-102004–1992, US Department of Energy, Office of Scientific and Technical Information, Piontek K, Antorini M, Choinowski T (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J Biol Chem, 277: 37663–37669

175
Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V (2011). Induction and transcriptional regulation of laccases in fungi. Curr Genomics, 12(2): 104–112

DOI PMID

176
Pogni R, Baratto M C, Teutloff C, Giansanti S, Ruiz-Dueñas F J, Choinowski T, Piontek K, Martínez A T, Lendzian F, Basosi R (2006). A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multifrequency EPR and density functional theory study. J Biol Chem, 281(14): 9517–9526

DOI PMID

177
Poulos T L, Edwards S L, Wariishi H, Gold M H (1993). Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem, 268(6): 4429–4440

PMID

178
Pozdnyakova N, Makarov O, Chernyshova M, Turkovskaya O, Jarosz-Wilkolazka A (2013). Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity. Enzyme Microb Technol, 52(1): 44–53

DOI PMID

179
Ragauskas A J, Beckham G T, Biddy M J, Chandra R, Chen F, Davis M F, Davison B H, Dixon R A, Gilna P, Keller M, Langan P, Naskar A K, Saddler J N, Tschaplinski T J, Tuskan G A, Wyman C E (2014). Lignin valorization: improving lignin processing in the biorefinery. Science, 344(6185): 1246843

DOI PMID

180
Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T (2006). The path forward for biofuels and biomaterials. Science, 311(5760): 484–489

DOI PMID

181
Raj A, Reddy M M K, Chandra R (2007). Decolourisation and treatment of pulp and paper mill effluent by lignin-degrading Bacillus sp.. J Chem Tech Biot, 82(4): 399–406

DOI

182
Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz P, Marita J, Hatfield R, Ralph S, Christensen J, Boerjan W (2004). Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev, 3(1/2): 29–60

DOI

183
Ramachandra M, Crawford D L, Hertel G (1988). Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol, 54(12): 3057–3063

PMID

184
Ramírez D A, Muñoz S V, Atehortua L, Michel F C Jr (2010). Effects of different wavelengths of light on lignin peroxidase production by the white-rot fungi Phanerochaete chrysosporium grown in submerged cultures. Bioresour Technol, 101(23): 9213–9220

DOI PMID

185
Reddy G V B, Sridhar M, Gold M H (2003). Cleavage of nonphenolic β-1 diarylpropane lignin model dimers by manganese peroxidase from Phanerochaete chrysosporium. Eur J Biochem, 270(2): 284–292

DOI PMID

186
Reiser J, Walther I S, Fraefel C, Fiechter A (1993). Methods to investigate the expression of lignin peroxidase genes by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 59(9): 2897–2903

PMID

187
Rico A, Rencoret J, Del Río J C, Martínez A T, Gutiérrez A (2014). Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels, 7(1): 6

DOI PMID

188
Riley R, Salamov A A, Brown D W, Nagy L G, Floudas D, Held B W, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist E A, Sun H, LaButti K M, Schmutz J, Jabbour D, Luo H, Baker S E, Pisabarro A G, Walton J D, Blanchette R A, Henrissat B, Martin F, Cullen D, Hibbett D S, Grigoriev I V (2014). Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A, 111(27): 9923–9928

DOI PMID

189
Roberts J N, Singh R, Grigg J C, Murphy M E, Bugg T D, Eltis L D (2011). Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry, 50(23): 5108–5119

DOI PMID

190
Roddy D J (2013). Biomass in a petrochemical world. Interface Focus, 3(1): 20120038

DOI PMID

191
Rodríguez Couto S, Toca Herrera J L (2006). Industrial and biotechnological applications of laccases: a review. Biotechnol Adv, 24(5): 500–513

DOI PMID

192
Ruiz-Dueñas F J, Camarero S, Pérez-Boada M, Martínez M J, Martínez A T (2001). A new versatile peroxidase from Pleurotus. Biochem Soc Trans, 29(Pt 2): 116–122

DOI PMID

193
Ruiz-Dueñas F J, Guillén F, Camarero S, Pérez-Boada M, Martínez M J, Martínez A T (1999). Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl Environ Microbiol, 65(10): 4458–4463

PMID

194
Ruiz-Dueñas F J, Martínez A T (2009). Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol, 2(2): 164–177

DOI PMID

195
Ruiz-Dueñas F J, Martínez M J, Martínez A T (1999). Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol, 31(1): 223–235

DOI PMID

196
Ruiz-Dueñas F J, Morales M, García E, Miki Y, Martínez M J, Martínez A T (2009a). Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot, 60(2): 441–452

DOI PMID

197
Ruiz-Dueñas F J, Morales M, Pérez-Boada M, Choinowski T, Martínez M J, Piontek K, Martínez A T (2007). Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry, 46(1): 66–77

DOI PMID

198
Ruiz-Dueñas F J, Pogni R, Morales M, Giansanti S, Mate M J, Romero A, Martínez M J, Basosi R, Martínez A T (2009b). Protein radicals in fungal versatile peroxidase: catalytic tryptophan radical in both compound I and compound II and studies on W164Y, W164H, and W164S variants. J Biol Chem, 284(12): 7986–7994

DOI PMID

199
Saha B C (2003). Hemicellulose bioconversion. J Ind Microbiol Biotechnol, 30(5): 279–291

DOI PMID

200
Salame T M, Knop D, Levinson D, Mabjeesh S J, Yarden O, Hadar Y (2012a). Release of Pleurotus ostreatus versatile-peroxidase from Mn2+ repression enhances anthropogenic and natural substrate degradation. PLoS One, 7(12): e52446

DOI PMID

201
Salame T M, Knop D, Tal D, Levinson D, Yarden O, Hadar Y (2012b). Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus. Appl Environ Microbiol, 78(15): 5341–5352

DOI PMID

202
Salvachúa D, Prieto A, Martínez A T, Martínez M J (2013). Characterization of a novel dye-decolorizing peroxidase (DyP)-type enzyme from Irpex lacteus and its application in enzymatic hydrolysis of wheat straw. Appl Environ Microbiol, 79(14): 4316–4324

DOI PMID

203
Santhanam N, Vivanco J M, Decker S R, Reardon K F (2011). Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol, 29(10): 480–489

DOI PMID

204
Schwarze F W M R, Engels J, Mattheck C (2000) Fungal strategies of wood decay in trees, New York, Berlin, Springer

205
Sharma P, Goel R, Capalash N (2007). Bacterial laccases. World J Microbiol Biotechnol, 23(6): 823–832

DOI

206
Shraddha S R, Shekher R, Sehgal S, Kamthania M, Kumar A (2011). Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res, 2011: 217861

PMID

207
Singh D, Chen S (2008). The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol, 81(3): 399–417

DOI PMID

208
Singh R, Grigg J C, Armstrong Z, Murphy M E, Eltis L D (2012). Distal heme pocket residues of B-type dye-decolorizing peroxidase: arginine but not aspartate is essential for peroxidase activity. J Biol Chem, 287(13): 10623–10630

DOI PMID

209
Soden D M, Dobson A D (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, 147(Pt 7): 1755–1763

PMID

210
Soden D M, Dobson A D (2003). The use of amplified flanking region-PCR in the isolation of laccase promoter sequences from the edible fungus Pleurotus sajor-caju. J Appl Microbiol, 95(3): 553–562

DOI PMID

211
Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004). Toward a systems approach to understanding plant cell walls. Science, 306(5705): 2206–2211

DOI PMID

212
Stewart P, Cullen D (1999). Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium. J Bacteriol, 181(11): 3427–3432

PMID

213
Stewart P, Kersten P, Vanden Wymelenberg A, Gaskell J, Cullen D (1992). Lignin peroxidase gene family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome. J Bacteriol, 174(15): 5036–5042

PMID

214
Stoj C, Kosman D J (2003). Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett, 554(3): 422–426

DOI PMID

215
Strittmatter E, Wachter S, Liers C, Ullrich R, Hofrichter M, Plattner D A, Piontek K (2013). Radical formation on a conserved tyrosine residue is crucial for DyP activity. Arch Biochem Biophys, 537(2): 161–167

DOI PMID

216
Sugano Y (2009). DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci, 66(8): 1387–1403

DOI PMID

217
Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M (2007). DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem, 282(50): 36652–36658

DOI PMID

218
Sundaramoorthy M, Gold M H, Poulos T L (2010). Ultrahigh (0.93A) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism. J Inorg Biochem, 104(6): 683–690

DOI PMID

219
Sundaramoorthy M, Kishi K, Gold M H, Poulos T L (1994). The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem, 269(52): 32759–32767

PMID

220
Sundaramoorthy M, Kishi K, Gold M H, Poulos T L (1997). Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem, 272(28): 17574–17580

DOI PMID

221
Taylor C R, Hardiman E M, Ahmad M, Sainsbury P D, Norris P R, Bugg T D (2012). Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol, 113(3): 521–530

DOI PMID

222
Tello M, Corsini G, Larrondo L F, Salas L, Lobos S, Vicuña R (2000). Characterization of three new manganese peroxidase genes from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta, 1490(1–2): 137–144

DOI PMID

223
Thiele D J (1988). ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol, 8(7): 2745–2752

PMID

224
Tien M, Kirk T K (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science, 221(4611): 661–663

DOI PMID

225
Tien M, Kirk T K (1988) Lignin peroxidase of Phanerochaete chrysosporium. In: Willis A. Wood S T K (ed.). Methods in Enzymology, Academic Press, 238–249

226
Tuck C O, Pérez E, Horváth I T, Sheldon R A, Poliakoff M (2012). Valorization of biomass: deriving more value from waste. Science, 337(6095): 695–699

DOI PMID

227
Valli K, Wariishi H, Gold M H (1990). Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Biochemistry, 29(37): 8535–8539

DOI PMID

228
Vanden Wymelenberg A, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, Cullen D (2009). Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol, 75(12): 4058–4068

DOI PMID

229
Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield S D, Blanchette R A, Martinez D, Grigoriev I, Kersten P J, Cullen D (2010). Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol, 76(11): 3599–3610

DOI PMID

230
Wan C, Li Y (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv, 30(6): 1447–1457

DOI PMID

231
Wariishi H, Akileswaran L, Gold M H (1988). Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry, 27(14): 5365–5370

DOI PMID

232
Wariishi H, Gold M H (1990). Lignin peroxidase compound III. Mechanism of formation and decomposition. J Biol Chem, 265(4): 2070–2077

PMID

233
Wariishi H, Valli K, Renganathan V, Gold M H (1989). Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J Biol Chem, 264(24): 14185–14191

PMID

234
Welinder K G, Mauro J M, Nørskov-Lauritsen L (1992). Structure of plant and fungal peroxidases. Biochem Soc Trans, 20(2): 337–340

PMID

235
Wesenberg D, Kyriakides I, Agathos S N (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv, 22(1-2): 161–187

DOI PMID

236
Whitwam R E, Brown K R, Musick M, Natan M J, Tien M (1997). Mutagenesis of the Mn2+-binding site of manganese peroxidase affects oxidation of Mn2+ by both compound I and compound II. Biochemistry, 36(32): 9766–9773

DOI PMID

237
Williamson P R, Wakamatsu K, Ito S (1998). Melanin biosynthesis in Cryptococcus neoformans. J Bacteriol, 180(6): 1570–1572

PMID

238
Wong D W (2009). Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol, 157(2): 174–209

DOI PMID

239
Xiao X, Marzluf G A (1996). Identification of the native NIT2 major nitrogen regulatory protein in nuclear extracts of Neurospora crassa. Genetica, 97(2): 153–163

DOI PMID

240
Xiao Y Z, Hong Y Z, Li J F, Hang J, Tong P G, Fang W, Zhou C Z (2006). Cloning of novel laccase isozyme genes from Trametes sp. AH28-2 and analyses of their differential expression. Appl Microbiol Biotechnol, 71(4): 493–501

DOI PMID

241b
Xu F, Shin W, Brown S H, Wahleithner J A, Sundaram U M, Solomon E I (1996). A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. BiochimBiophysActa, 1292: 303–311

241
Yaropolov A I, Skorobogat’ko O V, Vartanov S S, Varfolomeyev S D (1994). Laccase. Appl Biochem Biotechnol, 49(3): 257–280

DOI

242
Yelle D J, Ralph J, Lu F, Hammel K E (2008). Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol, 10(7): 1844–1849

DOI PMID

243
Yoshida H, the Communication from the Chemical Society of Tokio (1883). Yoshida: Chemistry of lacquer (Urushi). J Chem Soc Trans, 43: 472–486

DOI

244
Yoshida T, Tsuge H, Konno H, Hisabori T, Sugano Y (2011). The catalytic mechanism of dye-decolorizing peroxidase DyP may require the swinging movement of an aspartic acid residue. FEBS J, 278(13): 2387–2394

DOI PMID

245
Zeng Y, Zhao S, Yang S, Ding S Y (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol, 27: 38–45

DOI PMID

246
Zhang Y H (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol, 35(5): 367–375

DOI PMID

247
Zimmermann W (1990). Degradation of lignin by bacteria. J Biotechnol, 13(2–3): 119–130

DOI

248
Zubieta C, Joseph R, Krishna S S, McMullan D, Kapoor M, Axelrod H L, Miller M D, Abdubek P, Acosta C, Astakhova T, Carlton D, Chiu H J, Clayton T, Deller M C, Duan L, Elias Y, Elsliger M A, Feuerhelm J, Grzechnik S K, Hale J, Han G W, Jaroszewski L, Jin K K, Klock H E, Knuth M W, Kozbial P, Kumar A, Marciano D, Morse A T, Murphy K D, Nigoghossian E, Okach L, Oommachen S, Reyes R, Rife C L, Schimmel P, Trout C V, van den Bedem H, Weekes D, White A, Xu Q, Hodgson K O, Wooley J, Deacon A M, Godzik A, Lesley S A, Wilson I A (2007). Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. Proteins: Struct, Funct. Bioinf, 69: 234–243

Outlines

/