REVIEW

Protein secretion systems in bacterial pathogens

  • Li XU , 1 ,
  • Yancheng LIU , 2
Expand
  • 1. Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
  • 2. Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA

Received date: 31 May 2014

Accepted date: 15 Sep 2014

Published date: 13 Jan 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Many bacterial pathogens utilize specialized secretion systems to deliver virulence factors into the extracellular milieu. These exported effectors act to manipulate various processes of targeted cells in order to create a suitable niche for bacterial growth. Currently, seven different types of secretion system have been described, of which Type I – VI are mainly present in Gram-negative bacteria and the newly discovered Type VII system seems exclusive to Gram-positive species. This review summaries our current understanding on the architecture and transport mechanisms of each secretion apparatus. We also discuss recent studies revealing the roles that these secretion systems and their substrates play in microbial pathogenesis.

Cite this article

Li XU , Yancheng LIU . Protein secretion systems in bacterial pathogens[J]. Frontiers in Biology, 2014 , 9(6) : 437 -447 . DOI: 10.1007/s11515-014-1333-z

Acknowledgements

The contents of the paper are the sole responsibility of the authors and do not necessarily represent the official views of any institute or organization.
Li Xu and Yancheng Liu declare that they have no conflict of interest. This article does not contain any studies with human and animal subjects performed by any of the authors.
1
Abdallah A M, Verboom T, Hannes F, Safi M, Strong M, Eisenberg D, Musters R J, Vandenbroucke-Grauls C M, Appelmelk B J, Luirink J, Bitter W (2006). A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol, 62(3): 667–679

DOI PMID

2
Abdallah A M, Verboom T, Weerdenburg E M, Gey van Pittius N C, Mahasha P W, Jiménez C, Parra M, Cadieux N, Brennan M J, Appelmelk B J, Bitter W (2009). PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol, 73(3): 329–340

DOI PMID

3
Anderson M, Chen Y H, Butler E K, Missiakas D M (2011). EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J Bacteriol, 193(7): 1583–1589

DOI PMID

4
Aschtgen M S, Gavioli M, Dessen A, Lloubès R, Cascales E (2010). The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol, 75(4): 886–899

DOI PMID

5
Atmakuri K, Cascales E, Christie P J (2004). Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol, 54(5): 1199–1211

DOI PMID

6
Backert S, Meyer T F (2006). Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol, 9(2): 207–217

DOI PMID

7
Bandyopadhyay P, Liu S, Gabbai C B, Venitelli Z, Steinman H M (2007). Environmental mimics and the Lvh type IVA secretion system contribute to virulence-related phenotypes of Legionella pneumophila. Infect Immun, 75(2): 723–735

DOI PMID

8
Baptista C, Barreto H C, São-José C (2013). High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis. PLoS ONE, 8(7): e67840

DOI PMID

9
Bardill J P, Miller J L, Vogel J P (2005). IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol, 56(1): 90–103

DOI PMID

10
Basler M, Pilhofer M, Henderson G P, Jensen G J, Mekalanos J J (2012). Type VI secretion requires a dynamic contractile phage tail-like structure. Nature, 483(7388): 182–186

DOI PMID

11
Berks B C (1996). A common export pathway for proteins binding complex redox cofactors? Mol Microbiol, 22(3): 393–404

DOI PMID

12
Berks B C, Palmer T, Sargent F (2005). Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol, 8(2): 174–181

DOI PMID

13
Bernardini M L, Mounier J, d’Hauteville H, Coquis-Rondon M, Sansonetti P J (1989). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA, 86(10): 3867–3871

DOI PMID

14
Birtalan S C, Phillips R M, Ghosh P (2002). Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol Cell, 9(5): 971–980

DOI PMID

15
Blocker A, Jouihri N, Larquet E, Gounon P, Ebel F, Parsot C, Sansonetti P, Allaoui A (2001). Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol Microbiol, 39(3): 652–663

DOI PMID

16
Bönemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A (2009). Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J, 28(4): 315–325

DOI PMID

17
Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009). Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics, 10(1): 104

DOI PMID

18
Brodin P, Majlessi L, Marsollier L, de Jonge M I, Bottai D, Demangel C, Hinds J, Neyrolles O, Butcher P D, Leclerc C, Cole S T, Brosch R (2006). Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect Immun, 74(1): 88–98

DOI PMID

19
Brooks T M, Unterweger D, Bachmann V, Kostiuk B, Pukatzki S (2013). Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem, 288(11): 7618–7625

DOI PMID

20
Burkinshaw B J, Strynadka N C (2014). Assembly and structure of the T3SS. Biochim Biophys Acta, 1843(8): 1649–1663

DOI PMID

21
Burts M L, DeDent A C, Missiakas D M (2008). EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol Microbiol, 69(3): 736–746

DOI PMID

22
Burts M L, Williams W A, DeBord K, Missiakas D M (2005). EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci USA, 102(4): 1169–1174

DOI PMID

23
Buscher B A, Conover G M, Miller J L, Vogel S A, Meyers S N, Isberg R R, Vogel J P (2005). The DotL protein, a member of the TraG-coupling protein family, is essential for viability of Legionella pneumophila strain Lp02. J Bacteriol, 187(9): 2927–2938

DOI PMID

24
Cascales E (2008). The type VI secretion toolkit. EMBO Rep, 9(8): 735–741

DOI PMID

25
Cascales E, Christie P J (2004). Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci USA, 101(49): 17228–17233

DOI PMID

26
Champion P A, Stanley S A, Champion M M, Brown E J, Cox J S (2006). C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science, 313(5793): 1632–1636

DOI PMID

27
Christie P J, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol, 59(1): 451–485

DOI PMID

28
Christie P J, Cascales E (2005). Structural and dynamic properties of bacterial type IV secretion systems. Mol Membr Biol, 22(1–2): 51–61

DOI PMID

29
Cianciotto N P (2005). Type II secretion: a protein secretion system for all seasons. Trends Microbiol, 13(12): 581–588

DOI PMID

30
Cianciotto N P (2009). Many substrates and functions of type II secretion: lessons learned from Legionella pneumophila. Future Microbiol, 4(7): 797–805

DOI PMID

31
Coers J, Kagan J C, Matthews M, Nagai H, Zuckman D M, Roy C R (2000). Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol Microbiol, 38(4): 719–736

DOI PMID

32
Converse S E, Cox J S (2005). A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis. J Bacteriol, 187(4): 1238–1245

DOI PMID

33
Cornelis G R (2006). The type III secretion injectisome. Nat Rev Microbiol, 4(11): 811–825

DOI PMID

34
Coulthurst S J (2013). The Type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol, 164(6): 640–654

DOI PMID

35
Cover T L, Blanke S R (2005). Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol, 3(4): 320–332

DOI PMID

36
d’Enfert C, Ryter A, Pugsley A P (1987). Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. EMBO J, 6(11): 3531–3538

PMID

37
Dai S, Zhou D (2004). Secretion and function of Salmonella SPI-2 effector SseF require its chaperone, SscB. J Bacteriol, 186(15): 5078–5086

DOI PMID

38
Daleke M H, Cascioferro A, de Punder K, Ummels R, Abdallah A M, van der Wel N, Peters P J, Luirink J, Manganelli R, Bitter W (2011). Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway. J Biol Chem, 286(21): 19024–19034

DOI PMID

39
Daleke M H, van der Woude A D, Parret A H, Ummels R, de Groot A M, Watson D, Piersma S R, Jiménez C R, Luirink J, Bitter W, Houben E N (2012). Specific chaperones for the type VII protein secretion pathway. J Biol Chem, 287(38): 31939–31947

DOI PMID

40
De Buck E, Höper D, Lammertyn E, Hecker M, Anné J (2008). Differential 2-D protein gel electrophoresis analysis of Legionella pneumophila wild type and Tat secretion mutants. Int J Med Microbiol, 298(5–6): 449–461

DOI PMID

41
De Buck E, Lebeau I, Maes L, Geukens N, Meyen E, Van Mellaert L, Anné J, Lammertyn E (2004). A putative twin-arginine translocation pathway in Legionella pneumophila. Biochem Biophys Res Commun, 317(2): 654–661

DOI PMID

42
De Buck E, Maes L, Meyen E, Van Mellaert L, Geukens N, Anné J, Lammertyn E (2005). Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. Biochem Biophys Res Commun, 331(4): 1413–1420

DOI PMID

43
DebRoy S, Dao J, Söderberg M, Rossier O, Cianciotto N P (2006). Legionella pneumophilatype II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci USA, 103(50): 19146–19151

DOI PMID

44
Deiwick J, Nikolaus T, Shea J E, Gleeson C, Holden D W, Hensel M (1998). Mutations in Salmonella pathogenicity island 2 (SPI2) genes affecting transcription of SPI1 genes and resistance to antimicrobial agents. J Bacteriol, 180(18): 4775–4780

PMID

45
Delepelaire P (2004). Type I secretion in gram-negative bacteria. Biochim Biophys Acta, 1694(1-3): 149–161

DOI PMID

46
Duménil G, Isberg R R (2001). The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Mol Microbiol, 40(5): 1113–1127

DOI PMID

47
Figueira R, Holden D W (2012). Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology, 158(Pt 5): 1147–1161

DOI PMID

48
Filloux A (2004). The underlying mechanisms of type II protein secretion. Biochim Biophys Acta, 1694(1-3): 163–179

DOI PMID

49
Filloux A, Hachani A, Bleves S (2008). The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology, 154(Pt 6): 1570–1583

DOI PMID

50
Fischetti V A (2008). Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol, 11(5): 393–400

DOI PMID

51
Fritsch M J, Trunk K, Diniz J A, Guo M, Trost M, Coulthurst S J (2013). Proteomic identification of novel secreted antibacterial toxins of the Serratia marcescens type VI secretion system. Mol Cell Proteomics, 12(10): 2735–2749

DOI PMID

52
Galán J E (2001). Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol, 17(1): 53–86

DOI PMID

53
Galán J E, Wolf-Watz H (2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature, 444(7119): 567–573

DOI PMID

54
Garufi G, Butler E, Missiakas D (2008). ESAT-6-like protein secretion in Bacillus anthracis. J Bacteriol, 190(21): 7004–7011

DOI PMID

55
Gaspar A H, Machner M P (2014). VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. Proc Natl Acad Sci USA, 111(12): 4560–4565

DOI PMID

56
Geukens N, De Buck E, Meyen E, Maes L, Vranckx L, Van Mellaert L, Anné J, Lammertyn E (2006). The type II signal peptidase of Legionella pneumophila. Res Microbiol, 157(9): 836–841

DOI PMID

57
Guinn K M, Hickey M J, Mathur S K, Zakel K L, Grotzke J E, Lewinsohn D M, Smith S, Sherman D R (2004). Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol, 51(2): 359–370

DOI PMID

58
Hales L M, Shuman H A (1999). Legionella pneumophilacontains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. Infect Immun, 67(7): 3662–3666

PMID

59
Henderson I R, Nataro J P (2001). Virulence functions of autotransporter proteins. Infect Immun, 69(3): 1231–1243

DOI PMID

60
Henderson I R, Navarro-Garcia F, Desvaux M, Fernandez R C, Ala’Aldeen D (2004). Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev, 68(4): 692–744

DOI PMID

61
Higashide W, Zhou D (2006). The first 45 amino acids of SopA are necessary for InvB binding and SPI-1 secretion. J Bacteriol, 188(7): 2411–2420

DOI PMID

62
Holland I B, Schmitt L, Young J (2005). Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway. Mol Membr Biol, 22(1-2): 29–39

DOI PMID

63
Hood R D, Singh P, Hsu F, Güvener T, Carl M A, Trinidad R R, Silverman J M, Ohlson B B, Hicks K G, Plemel R L, Li M, Schwarz S, Wang W Y, Merz A J, Goodlett D R, Mougous J D (2010). A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe, 7(1): 25–37

DOI PMID

64
Houben E N, Bestebroer J, Ummels R, Wilson L, Piersma S R, Jiménez C R, Ottenhoff T H, Luirink J, Bitter W (2012). Composition of the type VII secretion system membrane complex. Mol Microbiol, 86(2): 472–484

DOI PMID

65
Hsu T, Hingley-Wilson S M, Chen B, Chen M, Dai A Z, Morin P M, Marks C B, Padiyar J, Goulding C, Gingery M, Eisenberg D, Russell R G, Derrick S C, Collins F M, Morris S L, King C H, Jacobs W R Jr (2003). The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA, 100(21): 12420–12425

DOI PMID

66
Hubber A, Roy C R (2010). Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol, 26(1): 261–283

DOI PMID

67
Ilghari D, Lightbody K L, Veverka V, Waters L C, Muskett F W, Renshaw P S, Carr M D (2011). Solution structure of the Mycobacterium tuberculosis EsxG·EsxH complex: functional implications and comparisons with other M.tuberculosis Esx family complexes. J Biol Chem, 286(34): 29993–30002

DOI PMID

68
Ize B, Palmer T (2006). Microbiology. Mycobacteria’s export strategy. Science, 313(5793): 1583–1584

DOI PMID

69
Jacobi S, Heuner K (2003). Description of a putative type I secretion system in Legionella pneumophila. Int J Med Microbiol, 293(5): 349–358

DOI PMID

70
Johnson T L, Abendroth J, Hol W G, Sandkvist M (2006). Type II secretion: from structure to function. FEMS Microbiol Lett, 255(2): 175–186

DOI PMID

71
Journet L, Hughes K T, Cornelis G R (2005). Type III secretion: a secretory pathway serving both motility and virulence. Mol Membr Biol, 22(1–2): 41–50

DOI PMID

72
Kanamaru S (2009). Structural similarity of tailed phages and pathogenic bacterial secretion systems. Proc Natl Acad Sci USA, 106(11): 4067–4068

DOI PMID

73
Komano T, Yoshida T, Narahara K, Furuya N (2000). The transfer region of IncI1 plasmid R64: similarities between R64 tra and legionella icm/dot genes. Mol Microbiol, 35(6): 1348–1359

DOI PMID

74
Koskiniemi S, Lamoureux J G, Nikolakakis K C, t’Kint de Roodenbeke C, Kaplan M D, Low D A, Hayes C S (2013). Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci USA, 110(17): 7032–7037

DOI PMID

75
Lammertyn E, Anné J (2004). Protein secretion in Legionella pneumophila and its relation to virulence. FEMS Microbiol Lett, 238(2): 273–279

PMID

76
Lammertyn E, Van Mellaert L, Meyen E, Lebeau I, De Buck E, Anné J, Geukens N (2004). Molecular and functional characterization of type I signal peptidase from Legionella pneumophila. Microbiology, 150(Pt 5): 1475–1483

DOI PMID

77
Leiman P G, Basler M, Ramagopal U A, Bonanno J B, Sauder J M, Pukatzki S, Burley S K, Almo S C, Mekalanos J J (2009). Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA, 106(11): 4154–4159

DOI PMID

78
Lewis K N, Liao R, Guinn K M, Hickey M J, Smith S, Behr M A, Sherman D R (2003). Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guérin attenuation. J Infect Dis, 187(1): 117–123

DOI PMID

79
Liles M R, Edelstein P H, Cianciotto N P (1999). The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Mol Microbiol, 31(3): 959–970

DOI PMID

80
Lin J S, Ma L S, Lai E M (2013). Systematic dissection of the agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation. PLoS ONE, 8(7): e67647

DOI PMID

81
Liu Y, Gao P, Banga S, Luo Z Q (2008). An in vivo gene deletion system for determining temporal requirement of bacterial virulence factors. Proc Natl Acad Sci USA, 105(27): 9385–9390

DOI PMID

82
Liu Y, Luo Z Q (2007). The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect Immun, 75(2): 592–603

DOI PMID

83
Lossi N S, Dajani R, Freemont P, Filloux A (2011). Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology, 157(Pt 12): 3292–3305

DOI PMID

84
Luo Z Q, Isberg R R (2004). Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci USA, 101(3): 841–846

DOI PMID

85
Ma A T, McAuley S, Pukatzki S, Mekalanos J J (2009). Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe, 5(3): 234–243

DOI PMID

86
Ma A T, Mekalanos J J (2010). In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci USA, 107(9): 4365–4370

DOI PMID

87
Machner M P, Isberg R R (2006). Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell, 11(1): 47–56

DOI PMID

88
Mackman N, Holland I B (1984). Functional characterization of a cloned haemolysin determinant from E. coli of human origin, encoding information for the secretion of a 107K polypeptide. Mol Gen Genet, 196(1): 129–134

DOI PMID

89
Mahairas G G, Sabo P J, Hickey M J, Singh D C, Stover C K (1996). Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol, 178(5): 1274–1282

PMID

90
Marie C, Broughton W J, Deakin W J (2001). Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol, 4(4): 336–342

DOI PMID

91
Matthews M, Roy C R (2000). Identification and subcellular localization of the Legionella pneumophila IcmX protein: a factor essential for establishment of a replicative organelle in eukaryotic host cells. Infect Immun, 68(7): 3971–3982

DOI PMID

92
Michiels T, Vanooteghem J C, Lambert de Rouvroit C, China B, Gustin A, Boudry P, Cornelis G R (1991). Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica. J Bacteriol, 173(16): 4994–5009

PMID

93
Mougous J D, Cuff M E, Raunser S, Shen A, Zhou M, Gifford C A, Goodman A L, Joachimiak G, Ordoñez C L, Lory S, Walz T, Joachimiak A, Mekalanos J J (2006). A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 312(5779): 1526–1530

DOI PMID

94
Murata T, Delprato A, Ingmundson A, Toomre D K, Lambright D G, Roy C R (2006). The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol, 8(9): 971–977

DOI PMID

95
Murdoch S L, Trunk K, English G, Fritsch M J, Pourkarimi E, Coulthurst S J (2011). The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol, 193(21): 6057–6069

DOI PMID

96
Nagai H, Kagan J C, Zhu X, Kahn R A, Roy C R (2002). A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science, 295(5555): 679–682

DOI PMID

97
Nivaskumar M, Francetic O (2014). Type II secretion system: a magic beanstalk or a protein escalator. Biochim Biophys Acta, 1843(8): 1568–1577

DOI PMID

98
Oomen C J, van Ulsen P, van Gelder P, Feijen M, Tommassen J, Gros P (2004). Structure of the translocator domain of a bacterial autotransporter. EMBO J, 23(6): 1257–1266

DOI PMID

99
Page A L, Parsot C (2002). Chaperones of the type III secretion pathway: jacks of all trades. Mol Microbiol, 46(1): 1–11

DOI PMID

100
Pallen M J (2002). The ESAT-6/WXG100 superfamily — and a new Gram-positive secretion system? Trends Microbiol, 10(5): 209–212

DOI PMID

101
Poole S J, Diner E J, Aoki S K, Braaten B A, t’Kint de Roodenbeke C, Low D A, Hayes C S (2011). Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet, 7(8): e1002217

DOI PMID

102
Pukatzki S, Ma A T, Revel A T, Sturtevant D, Mekalanos J J (2007). Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA, 104(39): 15508–15513

DOI PMID

103
Pukatzki S, Ma A T, Sturtevant D, Krastins B, Sarracino D, Nelson W C, Heidelberg J F, Mekalanos J J (2006). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA, 103(5): 1528–1533

DOI PMID

104
Pym A S, Brodin P, Brosch R, Huerre M, Cole S T (2002). Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol, 46(3): 709–717

DOI PMID

105
Pym A S, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths K E, Marchal G, Leclerc C, Cole S T (2003). Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med, 9(5): 533–539

DOI PMID

106
Ridenour D A, Cirillo S L, Feng S, Samrakandi M M, Cirillo J D (2003). Identification of a gene that affects the efficiency of host cell infection by Legionella pneumophila in a temperature-dependent fashion. Infect Immun, 71(11): 6256–6263

DOI PMID

107
Robinson C G, Roy C R (2006). Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cell Microbiol, 8(5): 793–805

DOI PMID

108
Rodríguez-Escudero I, Ferrer N L, Rotger R, Cid V J, Molina M (2011). Interaction of the Salmonella typhimurium effector protein SopB with host cell Cdc42 is involved in intracellular replication. Mol Microbiol, 80(5): 1220–1240

DOI PMID

109
Rossier O, Cianciotto N P (2005). The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection. Infect Immun, 73(4): 2020–2032

DOI PMID

110
Rossier O, Dao J, Cianciotto N P (2008). The type II secretion system of Legionella pneumophila elaborates two aminopeptidases, as well as a metalloprotease that contributes to differential infection among protozoan hosts. Appl Environ Microbiol, 74(3): 753–761

DOI PMID

111
Rossier O, Starkenburg S R, Cianciotto N P (2004). Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires’ disease pneumonia. Infect Immun, 72(1): 310–321

DOI PMID

112
Russell A B, LeRoux M, Hathazi K, Agnello D M, Ishikawa T, Wiggins P A, Wai S N, Mougous J D (2013). Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature, 496(7446): 508–512

DOI PMID

113
Russell A B, Singh P, Brittnacher M, Bui N K, Hood R D, Carl M A, Agnello D M, Schwarz S, Goodlett D R, Vollmer W, Mougous J D (2012). A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe, 11(5): 538–549

DOI PMID

114
Sandkvist M (2001). Type II secretion and pathogenesis. Infect Immun, 69(6): 3523–3535

DOI PMID

115
Sandkvist M, Michel L O, Hough L P, Morales V M, Bagdasarian M, Koomey M, DiRita V J, Bagdasarian M (1997). General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J Bacteriol, 179(22): 6994–7003

PMID

116
Segal G, Purcell M, Shuman H A (1998). Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci USA, 95(4): 1669–1674

DOI PMID

117
Serra D O, Conover M S, Arnal L, Sloan G P, Rodriguez M E, Yantorno O M, Deora R (2011). FHA-mediated cell-substrate and cell-cell adhesions are critical for Bordetella pertussis biofilm formation on abiotic surfaces and in the mouse nose and the trachea. PLoS ONE, 6(12): e28811

DOI PMID

118
Sexton J A, Pinkner J S, Roth R, Heuser J E, Hultgren S J, Vogel J P (2004). The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J Bacteriol, 186(6): 1658–1666

DOI PMID

119
Shen X, Banga S, Liu Y, Xu L, Gao P, Shamovsky I, Nudler E, Luo Z Q (2009). Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol, 11(6): 911–926

DOI PMID

120
Shneider M M, Buth S A, Ho B T, Basler M, Mekalanos J J, Leiman P G (2013). PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature, 500(7462): 350–353

DOI PMID

121
Shrivastava R, Miller J F (2009). Virulence factor secretion and translocation by Bordetella species. Curr Opin Microbiol, 12(1): 88–93

DOI PMID

122
Silverman J M, Agnello D M, Zheng H, Andrews B T, Li M, Catalano C E, Gonen T, Mougous J D (2013). Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell, 51(5): 584–593

DOI PMID

123
Silverman J M, Austin L S, Hsu F, Hicks K G, Hood R D, Mougous J D (2011). Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol Microbiol, 82(5): 1277–1290

DOI PMID

124
Silverman J M, Brunet Y R, Cascales E, Mougous J D (2012). Structure and regulation of the type VI secretion system. Annu Rev Microbiol, 66(1): 453–472

DOI PMID

125
Sørensen A L, Nagai S, Houen G, Andersen P, Andersen A B (1995). Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun, 63(5): 1710–1717

PMID

126
Srikannathasan V, English G, Bui N K, Trunk K, O’Rourke P E, Rao V A, Vollmer W, Coulthurst S J, Hunter W N (2013). Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr, 69(Pt 12): 2468–2482

DOI PMID

127
St Geme J W 3rd, Yeo H J (2009). A prototype two-partner secretion pathway: the Haemophilus influenzae HMW1 and HMW2 adhesin systems. Trends Microbiol, 17(8): 355–360

DOI PMID

128
Stanley S A, Raghavan S, Hwang W W, Cox J S (2003). Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA, 100(22): 13001–13006

DOI PMID

129
Stebbins C E, Galán J E (2001). Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature, 414(6859): 77–81

DOI PMID

130
Suarez G, Sierra J C, Erova T E, Sha J, Horneman A J, Chopra A K (2010). A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol, 192(1): 155–168

DOI PMID

131
Sun E W, Wagner M L, Maize A, Kemler D, Garland-Kuntz E, Xu L, Luo Z Q, Hollenbeck P J (2013). Legionella pneumophila infection of Drosophila S2 cells induces only minor changes in mitochondrial dynamics. PLoS ONE, 8(4): e62972

DOI PMID

132
Tauschek M, Gorrell R J, Strugnell R A, Robins-Browne R M (2002). Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci USA, 99(10): 7066–7071

DOI PMID

133
Thanassi D G, Stathopoulos C, Karkal A, Li H (2005). Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of gram-negative bacteria. Mol Membr Biol, 22(1–2): 63–72

DOI PMID

134
Thomas S, Holland I B, Schmitt L (2013). The Type 1 secretion pathway - The hemolysin system and beyond. Biochim Biophys Acta, 1843(8): 1629–1641

PMID

135
van Ulsen P, Rahman S U, Jong W S, Daleke-Schermerhorn M H, Luirink J (2013). Type V secretion: From biogenesis to biotechnology. Biochim Biophys Acta

PMID

136
van Ulsen P, van Alphen L, ten Hove J, Fransen F, van der Ley P, Tommassen J (2003). A Neisserial autotransporter NalP modulating the processing of other autotransporters. Mol Microbiol, 50(3): 1017–1030

DOI PMID

137
Vincent C D, Friedman J R, Jeong K C, Buford E C, Miller J L, Vogel J P (2006). Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol, 62(5): 1278–1291

DOI PMID

138
Vogel J P, Andrews H L, Wong S K, Isberg R R (1998). Conjugative transfer by the virulence system of Legionella pneumophila. Science, 279(5352): 873–876

DOI PMID

139
Voulhoux R, Ball G, Ize B, Vasil M L, Lazdunski A, Wu L F, Filloux A (2001). Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J, 20(23): 6735–6741

DOI PMID

140
Wagner J M, Evans T J, Korotkov K V (2014). Crystal structure of the N-terminal domain of EccA₁ ATPase from the ESX-1 secretion system of Mycobacterium tuberculosis. Proteins, 82(1): 159–163

DOI PMID

141
Welch R A, Dellinger E P, Minshew B, Falkow S (1981). Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature, 294(5842): 665–667

DOI PMID

142
Wenren L M, Sullivan N L, Cardarelli L, Septer A N, Gibbs K A (2013). Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. MBio, 4(4): 4

DOI PMID

143
Whitney J C, Chou S, Russell A B, Biboy J, Gardiner T E, Ferrin M A, Brittnacher M, Vollmer W, Mougous J D (2013). Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem, 288(37): 26616–26624

DOI PMID

144
Wille T, Wagner C, Mittelstädt W, Blank K, Sommer E, Malengo G, Döhler D, Lange A, Sourjik V, Hensel M, Gerlach R G (2014). SiiA and SiiB are novel type I secretion system subunits controlling SPI4-mediated adhesion of Salmonella enterica. Cell Microbiol, 16(2): 161–178

DOI PMID

145
Xu L, Luo Z Q (2013). Cell biology of infection by Legionella pneumophila. Microbes Infect, 15(2): 157–167

DOI PMID

146
Xu L, Shen X, Bryan A, Banga S, Swanson M S, Luo Z Q (2010). Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog, 6(3): e1000822

DOI PMID

147
Zhang Y, Higashide W M, McCormick B A, Chen J, Zhou D (2006). The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol Microbiol, 62(3): 786–793

DOI PMID

148
Zheng J, Ho B, Mekalanos J J (2011). Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS ONE, 6(8): e23876

DOI PMID

149
Zheng J, Leung K Y (2007). Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol, 66(5): 1192–1206

DOI PMID

150
Zhou D, Mooseker M S, Galán J E (1999). Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science, 283(5410): 2092–2095

DOI PMID

151
Zhou Y, Tao J, Yu H, Ni J, Zeng L, Teng Q, Kim K S, Zhao G P, Guo X, Yao Y (2012). Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun, 80(3): 1243–1251

DOI PMID

152
Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J, Luo Z Q (2011). Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS ONE, 6(3): e17638

DOI PMID

153
Zhu W, Hammad L A, Hsu F, Mao Y, Luo Z Q (2013). Induction of caspase 3 activation by multiple Legionella pneumophila Dot/Icm substrates. Cell Microbiol, 15(11): 1783–1795

PMID

154
Zusman T, Yerushalmi G, Segal G (2003). Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect Immun, 71: 3714–3723

Outlines

/