Received date: 02 Jun 2014
Accepted date: 02 Aug 2014
Published date: 11 Oct 2014
Copyright
The pathophysiology underlying spinal cord injury is complex. Mechanistic understanding of the adaptive responses to injury is critical for targeted therapy aimed at reestablishing lost connections between proximal and distal neurons. After injury, cell-type specific gene transcription programs govern distinct cellular behaviors, and chromatin regulators play a central role in shaping the chromatin landscape to adjust transcriptional profiles in a context-dependent manner. In this review, we summarize recent progress on the pleiotropic roles of chromatin regulators in mediating the diverse adaptive behaviors of neurons and glial cells after spinal cord injury, and wherever possible, discuss the underlying mechanisms and genomic targets. We specifically draw attention to the perspective that takes into consideration the impact of epigenetic modulation on axon growth potential, together with its effect on wound-healing properties of glial cells. Epigenetic modulation of chromatin state represents an emerging therapeutic direction to promote neural repair and axon regeneration after spinal cord injury.
Key words: epigenetics; chromatin; spinal cord injury; axon regeneration; neural repair
Jamie K. WONG , Hongyan ZOU . Reshaping the chromatin landscape after spinal cord injury[J]. Frontiers in Biology, 2014 , 9(5) : 356 -366 . DOI: 10.1007/s11515-014-1329-8
1 |
Abematsu M, Tsujimura K, Yamano M, Saito M, Kohno K, Kohyama J, Namihira M, Komiya S, Nakashima K (2010). Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest, 120(9): 3255–3266
|
2 |
Aguzzi A, Barres B A, Bennett M L (2013). Microglia: scapegoat, saboteur, or something else? Science, 339(6116): 156–161
|
3 |
Ashburner B P, Westerheide S D, Baldwin A S Jr (2001). The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol, 21(20): 7065–7077
|
4 |
Bardehle S, Krüger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert H J, Theis F J, Meyer-Luehmann M, Bechmann I, Dimou L, Götz M (2013). Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci, 16(5): 580–586
|
5 |
Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger F W, Meletis K, Frisén J (2010). Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell, 7(4): 470–482
|
6 |
Bartholdi D, Schwab M E (1997). Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci, 9(7): 1422–1438
|
7 |
Beck K D, Nguyen H X, Galvan M D, Salazar D L, Woodruff T M, Anderson A J (2010). Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain, 133(Pt 2): 433–447
|
8 |
Bethea J R, Castro M, Keane R W, Lee T T, Dietrich W D, Yezierski R P (1998). Traumatic spinal cord injury induces nuclear factor-κB activation. J Neurosci, 18(9): 3251–3260
|
9 |
Broide R S, Redwine J M, Aftahi N, Young W, Bloom F E, Winrow C J (2007). Distribution of histone deacetylases 1-11 in the rat brain. J Mol Neurosci, 31(1): 47–58
|
10 |
Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn A P, Mori T, Götz M (2008). Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci USA, 105(9): 3581–3586
|
11 |
Carlson S L, Parrish M E, Springer J E, Doty K, Dossett L (1998). Acute inflammatory response in spinal cord following impact injury. Exp Neurol, 151(1): 77–88
|
12 |
Carmel J B, Galante A, Soteropoulos P, Tolias P, Recce M, Young W, Hart R P (2001). Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol Genomics, 7(2): 201–213
|
13 |
Chen L F, Fischle W, Verdin E, Greene W C (2001). Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science, 293(5535): 1653–1657
|
14 |
Cho Y, Cavalli V (2012). HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J, 31(14): 3063–3078
|
15 |
Cho Y, Cavalli V (2014). HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol, 27C: 118–126
|
16 |
Cho Y, Sloutsky R, Naegle K M, Cavalli V (2013). Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell, 155(4): 894–908
|
17 |
David S, Kroner A (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci, 12(7): 388–399
|
18 |
de Lima S, Koriyama Y, Kurimoto T, Oliveira J T, Yin Y, Li Y, Gilbert H Y, Fagiolini M, Martinez A M, Benowitz L (2012). Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci USA, 109(23): 9149–9154
|
19 |
De Santa F, Narang V, Yap Z H, Tusi B K, Burgold T, Austenaa L, Bucci G, Caganova M, Notarbartolo S, Casola S, Testa G, Sung W K, Wei C L, Natoli G (2009). Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J, 28(21): 3341–3352
|
20 |
Elsharkawy A M, Oakley F, Lin F, Packham G, Mann D A, Mann J (2010). The NF-κB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. J Hepatol, 53(3): 519–527
|
21 |
Ernst J, Kheradpour P, Mikkelsen T S, Shoresh N, Ward L D, Epstein C B, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein B E (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473(7345): 43–49
|
22 |
Faraco G, Pittelli M, Cavone L, Fossati S, Porcu M, Mascagni P, Fossati G, Moroni F, Chiarugi A (2009). Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis, 36(2): 269–279
|
23 |
Faulkner J R, Herrmann J E, Woo M J, Tansey K E, Doan N B, Sofroniew M V (2004). Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci, 24(9): 2143–2155
|
24 |
Finelli M J, Wong J K, Zou H (2013). Epigenetic regulation of sensory axon regeneration after spinal cord injury. J Neurosci, 33(50): 19664–19676
|
25 |
Gaub P, Joshi Y, Wuttke A, Naumann U, Schnichels S, Heiduschka P, Di Giovanni S (2011). The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain, 134(Pt 7): 2134–2148
|
26 |
Gaub P, Tedeschi A, Puttagunta R, Nguyen T, Schmandke A, Di Giovanni S (2010). HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ, 17(9): 1392–1408
|
27 |
Gensel J C, Nakamura S, Guan Z, van Rooijen N, Ankeny D P, Popovich P G (2009). Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci, 29(12): 3956–3968
|
28 |
Gordon S, Martinez F O (2010). Alternative activation of macrophages: mechanism and functions. Immunity, 32(5): 593–604
|
29 |
Göritz C, Dias D O, Tomilin N, Barbacid M, Shupliakov O, Frisén J (2011). A pericyte origin of spinal cord scar tissue. Science, 333(6039): 238–242
|
30 |
Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014). In Vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell, 14(2): 188–202
|
31 |
Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage F H (2004). Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA, 101(47): 16659–16664
|
32 |
Ishii K, Toda M, Nakai Y, Asou H, Watanabe M, Nakamura M, Yato Y, Fujimura Y, Kawakami Y, Toyama Y, Uyemura K (2001). Increase of oligodendrocyte progenitor cells after spinal cord injury. J Neurosci Res, 65(6): 500–507
|
33 |
Iskandar B J, Rizk E, Meier B, Hariharan N, Bottiglieri T, Finnell R H, Jarrard D F, Banerjee R V, Skene J H, Nelson A, Patel N, Gherasim C, Simon K, Cook T D, Hogan K J (2010). Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. J Clin Invest, 120(5): 1603–1616
|
34 |
Karow M, Sánchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascón S, Khan M A, Lie D C, Dellavalle A, Cossu G, Goldbrunner R, Götz M, Berninger B (2012). Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell, 11(4): 471–476
|
35 |
Kigerl K A, Gensel J C, Ankeny D P, Alexander J K, Donnelly D J, Popovich P G (2009). Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci, 29(43): 13435–13444
|
36 |
Kim J Y, Shen S, Dietz K, He Y, Howell O, Reynolds R, Casaccia P (2010). HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci, 13(2): 180–189
|
37 |
Konsoula Z, Barile F A (2012). Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. J Pharmacol Toxicol Methods, 66(3): 215–220
|
38 |
Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693–705
|
39 |
Lee J Y, Kim H S, Choi H Y, Oh T H, Ju B G, Yune T Y (2012). Valproic acid attenuates blood-spinal cord barrier disruption by inhibiting matrix metalloprotease-9 activity and improves functional recovery after spinal cord injury. J Neurochem, 121(5): 818–829
|
40 |
Lindner R, Puttagunta R, Di Giovanni S (2013). Epigenetic regulation of axon outgrowth and regeneration in CNS injury: the first steps forward. Neurotherapeutics, 10(4): 771–781
|
41 |
Liu H, Hu Q, D’ercole A J, Ye P (2009). Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia, 57(1): 1–12
|
42 |
Liu K, Tedeschi A, Park K K, He Z (2011). Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci, 34(1): 131–152
|
43 |
Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig E S, Havton L A, Zheng B, Conner J M, Marsala M, Tuszynski M H (2012). Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell, 150(6): 1264–1273
|
44 |
Lu W H, Wang C Y, Chen P S, Wang J W, Chuang D M, Yang C S, Tzeng S F (2013). Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res, 91(5): 694–705
|
45 |
Lv L, Han X, Sun Y, Wang X, Dong Q (2012). Valproic acid improves locomotion in vivo after SCI and axonal growth of neurons in vitro. Exp Neurol, 233(2): 783–790
|
46 |
Lv L, Sun Y, Han X, Xu C C, Tang Y P, Dong Q (2011). Valproic acid improves outcome after rodent spinal cord injury: potential roles of histone deacetylase inhibition. Brain Res, 1396: 60–68
|
47 |
McTigue D M, Wei P, Stokes B T (2001). Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci, 21(10): 3392–3400
|
48 |
Montgomery R L, Hsieh J, Barbosa A C, Richardson J A, Olson E N (2009). Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA, 106(19): 7876–7881
|
49 |
Monti B, Polazzi E, Contestabile A (2009). Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol2: 95–109
|
50 |
Mullican S E, Gaddis C A, Alenghat T, Nair M G, Giacomin P R, Everett L J, Feng D, Steger D J, Schug J, Artis D, Lazar M A (2011). Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev, 25(23): 2480–2488
|
51 |
Neumann S, Woolf C J (1999). Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron, 23(1): 83–91
|
52 |
Niu W, Zang T, Zou Y, Fang S, Smith D K, Bachoo R, Zhang C L (2013). In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol, 15(10): 1164–1175
|
53 |
Oakley F, Mann J, Nailard S, Smart D E, Mungalsingh N, Constandinou C, Ali S, Wilson S J, Millward-Sadler H, Iredale J P, Mann D A (2005). Nuclear factor-κB1 (p50) limits the inflammatory and fibrogenic responses to chronic injury. Am J Pathol, 166(3): 695–708
|
54 |
Parikh P, Hao Y, Hosseinkhani M, Patil S B, Huntley G W, Tessier-Lavigne M, Zou H (2011). Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci USA, 108(19): E99–E107
|
55 |
Peleg S (2010). Memory impairment in mice altered histone acetylation is associated with age-dependent. Science, 328: 753–756
|
56 |
Ponomarev E D, Maresz K, Tan Y, Dittel B N (2007). CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci, 27(40): 10714–10721
|
57 |
Popovich P G, Jones T B (2003). Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends Pharmacol Sci, 24(1): 13–17
|
83 |
Popovich P G, Longbrake E E (2008). Can the immune system be harnessed to repair the CNS?Nat Rev Neurosci, 9: 481–493
|
58 |
Puttagunta R, Tedeschi A, Sória M G, Hervera A, Lindner R, Rathore K I, Gaub P, Joshi Y, Nguyen T, Schmandke A, Laskowski C J, Boutillier A L, Bradke F, Di Giovanni S (2014). PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun, 5: 3527
|
59 |
Ram O, Goren A, Amit I, Shoresh N, Yosef N, Ernst J, Kellis M, Gymrek M, Issner R, Coyne M, Durham T, Zhang X, Donaghey J, Epstein C B, Regev A, Bernstein B E (2011). Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell, 147(7): 1628–1639
|
60 |
Richardson P M, Issa V M (1984). Peripheral injury enhances central regeneration of primary sensory neurones. Nature, 309(5971): 791–793
|
61 |
Rivieccio M A, Brochier C, Willis D E, Walker B A, D’Annibale M A, McLaughlin K, Siddiq A, Kozikowski A P, Jaffrey S R, Twiss J L, Ratan R R, Langley B (2009). HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci USA, 106(46): 19599–19604
|
62 |
Sabelström H, Stenudd M, Réu P, Dias D O, Elfineh M, Zdunek S, Damberg P, Göritz C, Frisén J (2013). Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science, 342(6158): 637–640
|
63 |
Shen S, Sandoval J, Swiss V A, Li J, Dupree J, Franklin R J, Casaccia-Bonnefil P (2008). Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci, 11(9): 1024–1034
|
64 |
Silver J, Miller J H (2004). Regeneration beyond the glial scar. Nat Rev Neurosci, 5(2): 146–156
|
65 |
Stolt C C, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev, 16(2): 165–170
|
66 |
Su Z, Niu W, Liu M L, Zou Y, Zhang C L (2014). In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun, 5: 3338
|
67 |
Su Z, Yuan Y, Chen J, Zhu Y, Qiu Y, Zhu F, Huang A, He C (2011). Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-α. J Neurotrauma, 28(6): 1089–1100
|
68 |
Suyama K, Watanabe M, Sakai D, Osada T, Imai M, Mochida J (2007). Nkx2.2 expression in differentiation of oligodendrocyte precursor cells and inhibitory factors for differentiation of oligodendrocytes after traumatic spinal cord injury. J Neurotrauma, 24(6): 1013–1025
|
69 |
Tang B L (2014). Class II HDACs and neuronal regeneration. J Cell Biochem, 115(7): 1225–1233
|
70 |
Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S (2009). A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ, 16(4): 543–554
|
71 |
Torper O, Pfisterer U, Wolf D A, Pereira M, Lau S, Jakobsson J, Björklund A, Grealish S, Parmar M (2013). Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci USA, 110(17): 7038–7043
|
72 |
Totoiu M O, Keirstead H S (2005). Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol, 486(4): 373–383
|
73 |
Trakhtenberg E F, Goldberg J L (2012). Epigenetic regulation of axon and dendrite growth. Front Mol Neurosci, 5: 24
|
74 |
Wang Y, Cheng X, He Q, Zheng Y, Kim D H, Whittemore S R, Cao Q L (2011). Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci, 31(16): 6053–6058
|
75 |
Wanner I B, Anderson M A, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew M V (2013). Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci, 33(31): 12870–12886
|
76 |
Wisniewski H M, Bloom B R (1975). Primary demyelination as a nonspecific consequence of a cell-mediated immune reaction. J Exp Med, 141(2): 346–359
|
77 |
Xu J, Fan G, Chen S, Wu Y, Xu X M, Hsu C Y (1998). Methylprednisolone inhibition of TNF-α expression and NF-κB activation after spinal cord injury in rats. Brain Res Mol Brain Res, 59(2): 135–142
|
78 |
Ye F, Chen Y, Hoang T, Montgomery R L, Zhao X H, Bu H, Hu T, Taketo M M, van Es J H, Clevers H, Hsieh J, Bassel-Duby R, Olson E N, Lu Q R (2009). HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin-TCF interaction. Nat Neurosci, 12(7): 829–838
|
79 |
York E M, Petit A, Roskams A J (2013). Epigenetics of neural repair following spinal cord injury. Neurotherapeutics, 10(4): 757–770
|
80 |
Zamanian J L, Xu L, Foo L C, Nouri N, Zhou L, Giffard R G, Barres B A (2012). Genomic analysis of reactive astrogliosis. J Neurosci, 32(18): 6391–6410
|
81 |
Zhong J, Zou H (2014). BMP signaling in axon regeneration. Curr Opin Neurobiol, 27C: 127–134
|
82 |
Zou H, Ho C, Wong K, Tessier-Lavigne M (2009). Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci, 29(22): 7116–7123
|
/
〈 | 〉 |