Reshaping the chromatin landscape after spinal cord injury

Jamie K. WONG, Hongyan ZOU

PDF(721 KB)
PDF(721 KB)
Front. Biol. ›› 2014, Vol. 9 ›› Issue (5) : 356-366. DOI: 10.1007/s11515-014-1329-8
REVIEW
REVIEW

Reshaping the chromatin landscape after spinal cord injury

Author information +
History +

Abstract

The pathophysiology underlying spinal cord injury is complex. Mechanistic understanding of the adaptive responses to injury is critical for targeted therapy aimed at reestablishing lost connections between proximal and distal neurons. After injury, cell-type specific gene transcription programs govern distinct cellular behaviors, and chromatin regulators play a central role in shaping the chromatin landscape to adjust transcriptional profiles in a context-dependent manner. In this review, we summarize recent progress on the pleiotropic roles of chromatin regulators in mediating the diverse adaptive behaviors of neurons and glial cells after spinal cord injury, and wherever possible, discuss the underlying mechanisms and genomic targets. We specifically draw attention to the perspective that takes into consideration the impact of epigenetic modulation on axon growth potential, together with its effect on wound-healing properties of glial cells. Epigenetic modulation of chromatin state represents an emerging therapeutic direction to promote neural repair and axon regeneration after spinal cord injury.

Keywords

epigenetics / chromatin / spinal cord injury / axon regeneration / neural repair

Cite this article

Download citation ▾
Jamie K. WONG, Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury. Front. Biol., 2014, 9(5): 356‒366 https://doi.org/10.1007/s11515-014-1329-8

References

[1]
Abematsu M, Tsujimura K, Yamano M, Saito M, Kohno K, Kohyama J, Namihira M, Komiya S, Nakashima K (2010). Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest, 120(9): 3255–3266
CrossRef Pubmed Google scholar
[2]
Aguzzi A, Barres B A, Bennett M L (2013). Microglia: scapegoat, saboteur, or something else? Science, 339(6116): 156–161
CrossRef Pubmed Google scholar
[3]
Ashburner B P, Westerheide S D, Baldwin A S Jr (2001). The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol, 21(20): 7065–7077
CrossRef Pubmed Google scholar
[4]
Bardehle S, Krüger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert H J, Theis F J, Meyer-Luehmann M, Bechmann I, Dimou L, Götz M (2013). Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci, 16(5): 580–586
CrossRef Pubmed Google scholar
[5]
Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger F W, Meletis K, Frisén J (2010). Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell, 7(4): 470–482
CrossRef Pubmed Google scholar
[6]
Bartholdi D, Schwab M E (1997). Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci, 9(7): 1422–1438
CrossRef Pubmed Google scholar
[7]
Beck K D, Nguyen H X, Galvan M D, Salazar D L, Woodruff T M, Anderson A J (2010). Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain, 133(Pt 2): 433–447
CrossRef Pubmed Google scholar
[8]
Bethea J R, Castro M, Keane R W, Lee T T, Dietrich W D, Yezierski R P (1998). Traumatic spinal cord injury induces nuclear factor-κB activation. J Neurosci, 18(9): 3251–3260
Pubmed
[9]
Broide R S, Redwine J M, Aftahi N, Young W, Bloom F E, Winrow C J (2007). Distribution of histone deacetylases 1-11 in the rat brain. J Mol Neurosci, 31(1): 47–58
CrossRef Pubmed Google scholar
[10]
Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn A P, Mori T, Götz M (2008). Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci USA, 105(9): 3581–3586
CrossRef Pubmed Google scholar
[11]
Carlson S L, Parrish M E, Springer J E, Doty K, Dossett L (1998). Acute inflammatory response in spinal cord following impact injury. Exp Neurol, 151(1): 77–88
CrossRef Pubmed Google scholar
[12]
Carmel J B, Galante A, Soteropoulos P, Tolias P, Recce M, Young W, Hart R P (2001). Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol Genomics, 7(2): 201–213
Pubmed
[13]
Chen L F, Fischle W, Verdin E, Greene W C (2001). Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science, 293(5535): 1653–1657
CrossRef Pubmed Google scholar
[14]
Cho Y, Cavalli V (2012). HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J, 31(14): 3063–3078
CrossRef Pubmed Google scholar
[15]
Cho Y, Cavalli V (2014). HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol, 27C: 118–126
CrossRef Pubmed Google scholar
[16]
Cho Y, Sloutsky R, Naegle K M, Cavalli V (2013). Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell, 155(4): 894–908
CrossRef Pubmed Google scholar
[17]
David S, Kroner A (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci, 12(7): 388–399
CrossRef Pubmed Google scholar
[18]
de Lima S, Koriyama Y, Kurimoto T, Oliveira J T, Yin Y, Li Y, Gilbert H Y, Fagiolini M, Martinez A M, Benowitz L (2012). Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci USA, 109(23): 9149–9154
CrossRef Pubmed Google scholar
[19]
De Santa F, Narang V, Yap Z H, Tusi B K, Burgold T, Austenaa L, Bucci G, Caganova M, Notarbartolo S, Casola S, Testa G, Sung W K, Wei C L, Natoli G (2009). Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J, 28(21): 3341–3352
CrossRef Pubmed Google scholar
[20]
Elsharkawy A M, Oakley F, Lin F, Packham G, Mann D A, Mann J (2010). The NF-κB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. J Hepatol, 53(3): 519–527
CrossRef Pubmed Google scholar
[21]
Ernst J, Kheradpour P, Mikkelsen T S, Shoresh N, Ward L D, Epstein C B, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein B E (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473(7345): 43–49
CrossRef Pubmed Google scholar
[22]
Faraco G, Pittelli M, Cavone L, Fossati S, Porcu M, Mascagni P, Fossati G, Moroni F, Chiarugi A (2009). Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis, 36(2): 269–279
CrossRef Pubmed Google scholar
[23]
Faulkner J R, Herrmann J E, Woo M J, Tansey K E, Doan N B, Sofroniew M V (2004). Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci, 24(9): 2143–2155
CrossRef Pubmed Google scholar
[24]
Finelli M J, Wong J K, Zou H (2013). Epigenetic regulation of sensory axon regeneration after spinal cord injury. J Neurosci, 33(50): 19664–19676
CrossRef Pubmed Google scholar
[25]
Gaub P, Joshi Y, Wuttke A, Naumann U, Schnichels S, Heiduschka P, Di Giovanni S (2011). The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain, 134(Pt 7): 2134–2148
CrossRef Pubmed Google scholar
[26]
Gaub P, Tedeschi A, Puttagunta R, Nguyen T, Schmandke A, Di Giovanni S (2010). HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ, 17(9): 1392–1408
CrossRef Pubmed Google scholar
[27]
Gensel J C, Nakamura S, Guan Z, van Rooijen N, Ankeny D P, Popovich P G (2009). Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci, 29(12): 3956–3968
CrossRef Pubmed Google scholar
[28]
Gordon S, Martinez F O (2010). Alternative activation of macrophages: mechanism and functions. Immunity, 32(5): 593–604
CrossRef Pubmed Google scholar
[29]
Göritz C, Dias D O, Tomilin N, Barbacid M, Shupliakov O, Frisén J (2011). A pericyte origin of spinal cord scar tissue. Science, 333(6039): 238–242
CrossRef Pubmed Google scholar
[30]
Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014). In Vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell, 14(2): 188–202
CrossRef Pubmed Google scholar
[31]
Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage F H (2004). Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA, 101(47): 16659–16664
CrossRef Pubmed Google scholar
[32]
Ishii K, Toda M, Nakai Y, Asou H, Watanabe M, Nakamura M, Yato Y, Fujimura Y, Kawakami Y, Toyama Y, Uyemura K (2001). Increase of oligodendrocyte progenitor cells after spinal cord injury. J Neurosci Res, 65(6): 500–507
CrossRef Pubmed Google scholar
[33]
Iskandar B J, Rizk E, Meier B, Hariharan N, Bottiglieri T, Finnell R H, Jarrard D F, Banerjee R V, Skene J H, Nelson A, Patel N, Gherasim C, Simon K, Cook T D, Hogan K J (2010). Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. J Clin Invest, 120(5): 1603–1616
CrossRef Pubmed Google scholar
[34]
Karow M, Sánchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascón S, Khan M A, Lie D C, Dellavalle A, Cossu G, Goldbrunner R, Götz M, Berninger B (2012). Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell, 11(4): 471–476
CrossRef Pubmed Google scholar
[35]
Kigerl K A, Gensel J C, Ankeny D P, Alexander J K, Donnelly D J, Popovich P G (2009). Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci, 29(43): 13435–13444
CrossRef Pubmed Google scholar
[36]
Kim J Y, Shen S, Dietz K, He Y, Howell O, Reynolds R, Casaccia P (2010). HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci, 13(2): 180–189
CrossRef Pubmed Google scholar
[37]
Konsoula Z, Barile F A (2012). Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. J Pharmacol Toxicol Methods, 66(3): 215–220
CrossRef Pubmed Google scholar
[38]
Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693–705
CrossRef Pubmed Google scholar
[39]
Lee J Y, Kim H S, Choi H Y, Oh T H, Ju B G, Yune T Y (2012). Valproic acid attenuates blood-spinal cord barrier disruption by inhibiting matrix metalloprotease-9 activity and improves functional recovery after spinal cord injury. J Neurochem, 121(5): 818–829
CrossRef Pubmed Google scholar
[40]
Lindner R, Puttagunta R, Di Giovanni S (2013). Epigenetic regulation of axon outgrowth and regeneration in CNS injury: the first steps forward. Neurotherapeutics, 10(4): 771–781
CrossRef Pubmed Google scholar
[41]
Liu H, Hu Q, D’ercole A J, Ye P (2009). Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia, 57(1): 1–12
CrossRef Pubmed Google scholar
[42]
Liu K, Tedeschi A, Park K K, He Z (2011). Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci, 34(1): 131–152
CrossRef Pubmed Google scholar
[43]
Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig E S, Havton L A, Zheng B, Conner J M, Marsala M, Tuszynski M H (2012). Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell, 150(6): 1264–1273
CrossRef Pubmed Google scholar
[44]
Lu W H, Wang C Y, Chen P S, Wang J W, Chuang D M, Yang C S, Tzeng S F (2013). Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res, 91(5): 694–705
CrossRef Pubmed Google scholar
[45]
Lv L, Han X, Sun Y, Wang X, Dong Q (2012). Valproic acid improves locomotion in vivo after SCI and axonal growth of neurons in vitro. Exp Neurol, 233(2): 783–790
CrossRef Pubmed Google scholar
[46]
Lv L, Sun Y, Han X, Xu C C, Tang Y P, Dong Q (2011). Valproic acid improves outcome after rodent spinal cord injury: potential roles of histone deacetylase inhibition. Brain Res, 1396: 60–68
CrossRef Pubmed Google scholar
[47]
McTigue D M, Wei P, Stokes B T (2001). Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci, 21(10): 3392–3400
Pubmed
[48]
Montgomery R L, Hsieh J, Barbosa A C, Richardson J A, Olson E N (2009). Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA, 106(19): 7876–7881
CrossRef Pubmed Google scholar
[49]
Monti B, Polazzi E, Contestabile A (2009). Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol2: 95–109
[50]
Mullican S E, Gaddis C A, Alenghat T, Nair M G, Giacomin P R, Everett L J, Feng D, Steger D J, Schug J, Artis D, Lazar M A (2011). Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev, 25(23): 2480–2488
CrossRef Pubmed Google scholar
[51]
Neumann S, Woolf C J (1999). Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron, 23(1): 83–91
CrossRef Pubmed Google scholar
[52]
Niu W, Zang T, Zou Y, Fang S, Smith D K, Bachoo R, Zhang C L (2013). In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol, 15(10): 1164–1175
CrossRef Pubmed Google scholar
[53]
Oakley F, Mann J, Nailard S, Smart D E, Mungalsingh N, Constandinou C, Ali S, Wilson S J, Millward-Sadler H, Iredale J P, Mann D A (2005). Nuclear factor-κB1 (p50) limits the inflammatory and fibrogenic responses to chronic injury. Am J Pathol, 166(3): 695–708
CrossRef Pubmed Google scholar
[54]
Parikh P, Hao Y, Hosseinkhani M, Patil S B, Huntley G W, Tessier-Lavigne M, Zou H (2011). Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci USA, 108(19): E99–E107
CrossRef Pubmed Google scholar
[55]
Peleg S (2010). Memory impairment in mice altered histone acetylation is associated with age-dependent. Science, 328: 753–756
CrossRef Pubmed Google scholar
[56]
Ponomarev E D, Maresz K, Tan Y, Dittel B N (2007). CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci, 27(40): 10714–10721
CrossRef Pubmed Google scholar
[57]
Popovich P G, Jones T B (2003). Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends Pharmacol Sci, 24(1): 13–17
CrossRef Pubmed Google scholar
[83]
Popovich P G, Longbrake E E (2008). Can the immune system be harnessed to repair the CNS?Nat Rev Neurosci, 9: 481–493
[58]
Puttagunta R, Tedeschi A, Sória M G, Hervera A, Lindner R, Rathore K I, Gaub P, Joshi Y, Nguyen T, Schmandke A, Laskowski C J, Boutillier A L, Bradke F, Di Giovanni S (2014). PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun, 5: 3527
CrossRef Pubmed Google scholar
[59]
Ram O, Goren A, Amit I, Shoresh N, Yosef N, Ernst J, Kellis M, Gymrek M, Issner R, Coyne M, Durham T, Zhang X, Donaghey J, Epstein C B, Regev A, Bernstein B E (2011). Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell, 147(7): 1628–1639
CrossRef Pubmed Google scholar
[60]
Richardson P M, Issa V M (1984). Peripheral injury enhances central regeneration of primary sensory neurones. Nature, 309(5971): 791–793
CrossRef Pubmed Google scholar
[61]
Rivieccio M A, Brochier C, Willis D E, Walker B A, D’Annibale M A, McLaughlin K, Siddiq A, Kozikowski A P, Jaffrey S R, Twiss J L, Ratan R R, Langley B (2009). HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci USA, 106(46): 19599–19604
CrossRef Pubmed Google scholar
[62]
Sabelström H, Stenudd M, Réu P, Dias D O, Elfineh M, Zdunek S, Damberg P, Göritz C, Frisén J (2013). Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science, 342(6158): 637–640
CrossRef Pubmed Google scholar
[63]
Shen S, Sandoval J, Swiss V A, Li J, Dupree J, Franklin R J, Casaccia-Bonnefil P (2008). Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci, 11(9): 1024–1034
CrossRef Pubmed Google scholar
[64]
Silver J, Miller J H (2004). Regeneration beyond the glial scar. Nat Rev Neurosci, 5(2): 146–156
CrossRef Pubmed Google scholar
[65]
Stolt C C, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev, 16(2): 165–170
CrossRef Pubmed Google scholar
[66]
Su Z, Niu W, Liu M L, Zou Y, Zhang C L (2014). In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun, 5: 3338
CrossRef Pubmed Google scholar
[67]
Su Z, Yuan Y, Chen J, Zhu Y, Qiu Y, Zhu F, Huang A, He C (2011). Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-α. J Neurotrauma, 28(6): 1089–1100
CrossRef Pubmed Google scholar
[68]
Suyama K, Watanabe M, Sakai D, Osada T, Imai M, Mochida J (2007). Nkx2.2 expression in differentiation of oligodendrocyte precursor cells and inhibitory factors for differentiation of oligodendrocytes after traumatic spinal cord injury. J Neurotrauma, 24(6): 1013–1025
CrossRef Pubmed Google scholar
[69]
Tang B L (2014). Class II HDACs and neuronal regeneration. J Cell Biochem, 115(7): 1225–1233
CrossRef Pubmed Google scholar
[70]
Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S (2009). A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ, 16(4): 543–554
CrossRef Pubmed Google scholar
[71]
Torper O, Pfisterer U, Wolf D A, Pereira M, Lau S, Jakobsson J, Björklund A, Grealish S, Parmar M (2013). Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci USA, 110(17): 7038–7043
CrossRef Pubmed Google scholar
[72]
Totoiu M O, Keirstead H S (2005). Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol, 486(4): 373–383
CrossRef Pubmed Google scholar
[73]
Trakhtenberg E F, Goldberg J L (2012). Epigenetic regulation of axon and dendrite growth. Front Mol Neurosci, 5: 24
CrossRef Pubmed Google scholar
[74]
Wang Y, Cheng X, He Q, Zheng Y, Kim D H, Whittemore S R, Cao Q L (2011). Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci, 31(16): 6053–6058
CrossRef Pubmed Google scholar
[75]
Wanner I B, Anderson M A, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew M V (2013). Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci, 33(31): 12870–12886
CrossRef Pubmed Google scholar
[76]
Wisniewski H M, Bloom B R (1975). Primary demyelination as a nonspecific consequence of a cell-mediated immune reaction. J Exp Med, 141(2): 346–359
CrossRef Pubmed Google scholar
[77]
Xu J, Fan G, Chen S, Wu Y, Xu X M, Hsu C Y (1998). Methylprednisolone inhibition of TNF-α expression and NF-κB activation after spinal cord injury in rats. Brain Res Mol Brain Res, 59(2): 135–142
CrossRef Pubmed Google scholar
[78]
Ye F, Chen Y, Hoang T, Montgomery R L, Zhao X H, Bu H, Hu T, Taketo M M, van Es J H, Clevers H, Hsieh J, Bassel-Duby R, Olson E N, Lu Q R (2009). HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin-TCF interaction. Nat Neurosci, 12(7): 829–838
CrossRef Pubmed Google scholar
[79]
York E M, Petit A, Roskams A J (2013). Epigenetics of neural repair following spinal cord injury. Neurotherapeutics, 10(4): 757–770
CrossRef Pubmed Google scholar
[80]
Zamanian J L, Xu L, Foo L C, Nouri N, Zhou L, Giffard R G, Barres B A (2012). Genomic analysis of reactive astrogliosis. J Neurosci, 32(18): 6391–6410
CrossRef Pubmed Google scholar
[81]
Zhong J, Zou H (2014). BMP signaling in axon regeneration. Curr Opin Neurobiol, 27C: 127–134
CrossRef Pubmed Google scholar
[82]
Zou H, Ho C, Wong K, Tessier-Lavigne M (2009). Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci, 29(22): 7116–7123
CrossRef Pubmed Google scholar

Acknowledgements

We apologize to colleagues whose work could not be cited owing to space limitations. H. Z. is supported by NIH (NS073596) and IrmaT. Hirschl/Monique Weill-Caulier Foundation.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(721 KB)

Accesses

Citations

Detail

Sections
Recommended

/