REVIEW

Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems

  • Brandoch D. COOK
Expand
  • Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA

Received date: 30 May 2014

Accepted date: 04 Aug 2014

Published date: 11 Oct 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The onset of hematopoiesis in mammals is defined by generation of primitive erythrocytes and macrophage progenitors in embryonic yolk sac. Laboratories have met the challenge of transient and swiftly changing specification events from ventral mesoderm through multipotent progenitors and maturing lineage-restricted hematopoietic subtypes, by developing powerful in vitro experimental models to interrogate hematopoietic ontogeny. Most importantly, studies of differentiating embryonic stem cell derivatives in embryoid body and stromal coculture systems have identified crucial roles for transcription factor networks (e.g. Gata1, Runx1, Scl) and signaling pathways (e.g. BMP, VEGF, WNT) in controlling stem and progenitor cell output. These and other relevant pathways have pleiotropic biological effects, and are often associated with early embryonic lethality in knockout mice. Further refinement in subsequent studies has allowed conditional expression of key regulatory genes, and isolation of progenitors via cell surface markers (e.g. FLK1) and reporter-tagged constructs, with the purpose of measuring their primitive and definitive hematopoietic potential. These observations continue to inform attempts to direct the differentiation, and augment the expansion, of progenitors in human cell culture systems that may prove useful in cell replacement therapies for hematopoietic deficiencies. The purpose of this review is to survey the extant literature on the use of differentiating murine embryonic stem cells in culture to model the developmental process of yolk sac hematopoiesis.

Cite this article

Brandoch D. COOK . Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems[J]. Frontiers in Biology, 2014 , 9(5) : 339 -346 . DOI: 10.1007/s11515-014-1328-9

Acknowledgements

The author would like to thank Dr. Todd Evans for previewing the manuscript. Brandoch D. Cook is supported by a grant from the National Institutes of Health (NIH), K01-KD096031.
1
Baik J, Borges L, Magli A, Thatava T, Perlingeiro R C (2012). Effect of endoglin overexpression during embryoid body development. Exp Hematol, 40(10): 837–846

DOI PMID

2
Bielinska M, Narita N, Heikinheimo M, Porter S B, Wilson D B (1996). Erythropoiesis and vasculogenesis in embryoid bodies lacking visceral yolk sac endoderm. Blood, 88(10): 3720–3730

PMID

3
Boros K, Lacaud G, Kouskoff V (2011). The transcription factor Mxd4 controls the proliferation of the first blood precursors at the onset of hematopoietic development in vitro. Exp Hematol, 39(11): 1090–1100

DOI PMID

4
Chan R J, Johnson S A, Li Y, Yoder M C, Feng G S (2003). A definitive role of Shp-2 tyrosine phosphatase in mediating embryonic stem cell differentiation and hematopoiesis. Blood, 102(6): 2074–2080

DOI PMID

5
Chanda B, Ditadi A, Iscove N N, Keller G (2013). Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell, 155(1): 215–227

DOI PMID

6
Cheng X, Huber T L, Chen V C, Gadue P, Keller G M (2008). Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast. Development, 135(20): 3447–3458

DOI PMID

7
Clarke D, Vegiopoulos A, Crawford A, Mucenski M, Bonifer C, Frampton J (2000). In vitro differentiation of c-myb-/- ES cells reveals that the colony forming capacity of unilineage macrophage precursors and myeloid progenitor commitment are c-Myb independent. Oncogene, 19(30): 3343–3351

DOI PMID

8
Clarke R L, Yzaguirre A D, Yashiro-Ohtani Y, Bondue A, Blanpain C, Pear W S, Speck N A, Keller G (2013). The expression of Sox17 identifies and regulates haemogenic endothelium. Nat Cell Biol, 15(5): 502–510

DOI PMID

9
Cook B D, Evans T (2014). BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways. Blood, 124(3): 393–402

DOI PMID

10
Cook B D, Liu S, Evans T (2011). Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment. Blood, 117(24): 6489–6497

DOI PMID

11
Dahl L, Richter K, Hägglund A C, Carlsson L (2008). Lhx2 expression promotes self-renewal of a distinct multipotential hematopoietic progenitor cell in embryonic stem cell-derived embryoid bodies. PLoS ONE, 3(4): e2025

DOI PMID

12
Doetschman T C, Eistetter H, Katz M, Schmidt W, Kemler R (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol, 87: 27–45

PMID

13
Era T, Izumi N, Hayashi M, Tada S, Nishikawa S, Nishikawa S (2008). Multiple mesoderm subsets give rise to endothelial cells, whereas hematopoietic cells are differentiated only from a restricted subset in embryonic stem cell differentiation culture. Stem Cells, 26(2): 401–411

DOI PMID

14
Ferkowicz M J, Starr M, Xie X, Li W, Johnson S A, Shelley W C, Morrison P R, Yoder M C (2003). CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development, 130(18): 4393–4403

DOI PMID

15
Fujimoto T T, Kohata S, Suzuki H, Miyazaki H, Fujimura K (2003). Production of functional platelets by differentiated embryonic stem (ES) cells in vitro. Blood, 102(12): 4044–4051

DOI PMID

16
Gandillet A, Serrano A G, Pearson S, Lie-A-Ling M, Lacaud G, Kouskoff V (2009). Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood, 114(23): 4813–4822

DOI PMID

17
Grigoriadis A E, Kennedy M, Bozec A, Brunton F, Stenbeck G, Park I H, Wagner E F, Keller G M (2010). Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood, 115(14): 2769–2776

DOI PMID

18
Hadland B K, Huppert S S, Kanungo J, Xue Y, Jiang R, Gridley T, Conlon R A, Cheng A M, Kopan R, Longmore G D (2004). A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood, 104(10): 3097–3105

DOI PMID

19
Helgason C D, Sauvageau G, Lawrence H J, Largman C, Humphries R K (1996). Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated in vitro. Blood, 87(7): 2740–2749

PMID

20
Hidaka M, Stanford W L, Bernstein A (1999). Conditional requirement for the Flk-1 receptor in the in vitro generation of early hematopoietic cells. Proc Natl Acad Sci USA, 96(13): 7370–7375

DOI PMID

21
Irion S, Clarke R L, Luche H, Kim I, Morrison S J, Fehling H J, Keller G M (2010). Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development, 137(17): 2829–2839

DOI PMID

22
Jackson M, Axton R A, Taylor A H, Wilson J A, Gordon-Keylock S A, Kokkaliaris K D, Brickman J M, Schulz H, Hummel O, Hubner N, Forrester L M (2012). HOXB4 can enhance the differentiation of embryonic stem cells by modulating the hematopoietic niche. Stem Cells, 30(2): 150–160

DOI PMID

23
Johansson B M, Wiles M V (1995). Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol, 15(1): 141–151

PMID

24
Keller G, Kennedy M, Papayannopoulou T, Wiles M V (1993). Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol, 13(1): 473–486

PMID

25
Keller G, Wall C, Fong A Z, Hawley T S, Hawley R G (1998). Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential. Blood, 92(3): 877–887

PMID

26
Kennedy M, D’Souza S L, Lynch-Kattman M, Schwantz S, Keller G (2007). Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood, 109(7): 2679–2687

PMID

27
Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, Keller G (1997). A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature, 386(6624): 488–493

DOI PMID

28
Kingsley P D, Malik J, Fantauzzo K A, Palis J (2004). Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood, 104(1): 19–25

DOI PMID

29
Kitajima K, Kojima M, Nakajima K, Kondo S, Hara T, Miyajima A, Takeuchi T (1999). Definitive but not primitive hematopoiesis is impaired in jumonji mutant mice. Blood, 93(1): 87–95

PMID

30
Klimchenko O, Mori M, Distefano A, Langlois T, Larbret F, Lecluse Y, Feraud O, Vainchenker W, Norol F, Debili N (2009). A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. Blood, 114(8): 1506–1517

DOI PMID

31
Krause D S, Mucenski M L, Lawler A M, May W S (1998). CD34 expression by embryonic hematopoietic and endothelial cells does not require c-Myb. Exp Hematol, 26(11): 1086–1092

PMID

32
Kyba M, Perlingeiro R C, Daley G Q (2002). HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell, 109(1): 29–37

DOI PMID

33
Kyba M, Perlingeiro R C, Hoover R R, Lu C W, Pierce J, Daley G Q (2003). Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proc Natl Acad Sci USA, 100(Suppl 1): 11904–11910

DOI PMID

34
Lacaud G, Gore L, Kennedy M, Kouskoff V, Kingsley P, Hogan C, Carlsson L, Speck N, Palis J, Keller G (2002). Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood, 100(2): 458–466

DOI PMID

35
Laranjeiro R, Alcobia I, Neves H, Gomes A C, Saavedra P, Carvalho C C, Duarte A, Cidadão A, Parreira L (2012). The notch ligand delta-like 4 regulates multiple stages of early hemato-vascular development. PLoS ONE, 7(4): e34553

DOI PMID

36
Lengerke C, McKinney-Freeman S, Naveiras O, Yates F, Wang Y, Bansal D, Daley G Q (2007). The cdx-hox pathway in hematopoietic stem cell formation from embryonic stem cells. Ann N Y Acad Sci, 1106(1): 197–208

DOI PMID

37
Li X, Xiong J W, Shelley C S, Park H, Arnaout M A (2006). The transcription factor ZBP-89 controls generation of the hematopoietic lineage in zebrafish and mouse embryonic stem cells. Development, 133(18): 3641–3650

DOI PMID

38
Lichanska A M, Browne C M, Henkel G W, Murphy K M, Ostrowski M C, McKercher S R, Maki R A, Hume D A (1999). Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood, 94(1): 127–138

PMID

39
Liu B, Sun Y, Jiang F, Zhang S, Wu Y, Lan Y, Yang X, Mao N (2003). Disruption of Smad5 gene leads to enhanced proliferation of high-proliferative potential precursors during embryonic hematopoiesis. Blood, 101(1): 124–133

DOI PMID

40
Lu L S, Wang S J, Auerbach R (1996). In vitro and in vivo differentiation into B cells, T cells, and myeloid cells of primitive yolk sac hematopoietic precursor cells expanded>100-fold by coculture with a clonal yolk sac endothelial cell line. Proc Natl Acad Sci USA, 93(25): 14782–14787

DOI PMID

41
Lux C T, Yoshimoto M, McGrath K, Conway S J, Palis J, Yoder M C (2008). All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood, 111(7): 3435–3438

DOI PMID

42
Martin R, Lahlil R, Damert A, Miquerol L, Nagy A, Keller G, Hoang T (2004). SCL interacts with VEGF to suppress apoptosis at the onset of hematopoiesis. Development, 131(3): 693–702

DOI PMID

43
McLeod D L, Shreeve M M, Axelrad A A (1974). Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU-E. Blood, 44(4): 517–534

PMID

44
McReynolds L J, Gupta S, Figueroa M E, Mullins M C, Evans T (2007). Smad1 and Smad5 differentially regulate embryonic hematopoiesis. Blood, 110(12): 3881–3890

DOI PMID

45
Miller J D, Stacy T, Liu P P, Speck N A (2001). Core-binding factor β (CBFβ), but not CBFbeta-smooth muscle myosin heavy chain, rescues definitive hematopoiesis in CBFβ-deficient embryonic stem cells. Blood, 97(8): 2248–2256

DOI PMID

46
Nakano T, Kodama H, Honjo T (1996). In vitro development of primitive and definitive erythrocytes from different precursors. Science, 272(5262): 722–724

DOI PMID

47
Nogueira M M, Mitjavila-Garcia M T, Le Pesteur F, Filippi M D, Vainchenker W, Dubart Kupperschmitt A, Sainteny F (2000). Regulation of Id gene expression during embryonic stem cell-derived hematopoietic differentiation. Biochem Biophys Res Commun, 276(2): 803–812

DOI PMID

48
Nostro M C, Cheng X, Keller G M, Gadue P (2008). Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell, 2(1): 60–71

DOI PMID

49
Okuda T, van Deursen J, Hiebert S W, Grosveld G, Downing J R (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84(2): 321–330

DOI PMID

50
Otani T, Inoue T, Tsuji-Takayama K, Ijiri Y, Nakamura S, Motoda R, Orita K (2005). Progenitor analysis of primitive erythropoiesis generated from in vitro culture of embryonic stem cells. Exp Hematol, 33(6): 632–640

DOI PMID

51
Otani T, Nakamura S, Inoue T, Ijiri Y, Tsuji-Takayama K, Motoda R, Orita K (2004). Erythroblasts derived in vitro from embryonic stem cells in the presence of erythropoietin do not express the TER-119 antigen. Exp Hematol, 32(7): 607–613

DOI PMID

52
Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999). Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development, 126(22): 5073–5084

PMID

53
Pearson S, Lancrin C, Lacaud G, Kouskoff V (2010). The sequential expression of CD40 and Icam2 defines progressive steps in the formation of blood precursors from the mesoderm germ layer. Stem Cells, 28(6): 1089–1098

DOI PMID

54
Pereira C F, Chang B, Qiu J, Niu X, Papatsenko D, Hendry C E, Clark N R, Nomura-Kitabayashi A, Kovacic J C, Ma’ayan A, Schaniel C, Lemischka I R, Moore K (2013). Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell, 13(2): 205–218

DOI PMID

55
Perlingeiro R C, Kyba M, Bodie S, Daley G Q (2003). A role for thrombopoietin in hemangioblast development. Stem Cells, 21(3): 272–280

DOI PMID

56
Perlingeiro R C, Kyba M, Daley G Q (2001). Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential. Development, 128(22): 4597–4604

PMID

57
Pick M, Azzola L, Mossman A, Stanley E G, Elefanty A G (2007). Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells, 25(9): 2206–2214

DOI PMID

58
Pineault N, Helgason C D, Lawrence H J, Humphries R K (2002). Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol, 30(1): 49–57

DOI PMID

59
Robb L, Elwood N J, Elefanty A G, Köntgen F, Li R, Barnett L D, Begley C G (1996). The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J, 15(16): 4123–4129

PMID

60
Robb L, Lyons I, Li R, Hartley L, Köntgen F, Harvey R P, Metcalf D, Begley C G (1995). Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA, 92(15): 7075–7079

DOI PMID

61
Saleque S, Cameron S, Orkin S H (2002). The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev, 16(3): 301–306

DOI PMID

62
Sandler V M, Lis R, Liu Y, Kedem A, James D, Elemento O, Butler J M, Scandura J M, Rafii S (2014). Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature, 511(7509): 312–318

DOI PMID

63
Sauvageau G, Thorsteinsdottir U, Eaves C J, Lawrence H J, Largman C, Lansdorp P M, Humphries R K (1995). Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev, 9(14): 1753–1765

DOI PMID

64
Shalaby F, Ho J, Stanford W L, Fischer K D, Schuh A C, Schwartz L, Bernstein A, Rossant J (1997). A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell, 89(6): 981–990

DOI PMID

65
Shivdasani R A, Mayer E L, Orkin S H (1995). Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature, 373(6513): 432–434

DOI PMID

66
Simon M C, Pevny L, Wiles M V, Keller G, Costantini F, Orkin S H (1992). Rescue of erythroid development in gene targeted GATA-1- mouse embryonic stem cells. Nat Genet, 1(2): 92–98

DOI PMID

67
Southwood C M, Downs K M, Bieker J J (1996). Erythroid Kruppel-like factor exhibits an early and sequentially localized pattern of expression during mammalian erythroid ontogeny. Dev Dyn, 20: 248–259

68
Stephenson J R, Axelrad A A, McLeod D L, Shreeve M M (1971). Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA, 68(7): 1542–1546

DOI PMID

69
Sturgeon C M, Chicha L, Ditadi A, Zhou Q, McGrath K E, Palis J, Hammond S M, Wang S, Olson E N, Keller G (2012). Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells. Dev Cell, 23(1): 45–57

DOI PMID

70
Sturgeon C M, Ditadi A, Awong G, Kennedy M, Keller G (2014). Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol, 32(6): 554–561

DOI PMID

71
Suwabe N, Takahashi S, Nakano T, Yamamoto M (1998). GATA-1 regulates growth and differentiation of definitive erythroid lineage cells during in vitro ES cell differentiation. Blood, 92(11): 4108–4118

PMID

72
Tober J, Koniski A, McGrath K E, Vemishetti R, Emerson R, de Mesy-Bentley K K, Waugh R, Palis J (2007). The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood, 109(4): 1433–1441

DOI PMID

73
Tsai F Y, Keller G, Kuo F C, Weiss M, Chen J, Rosenblatt M, Alt F W, Orkin S H (1994). An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature, 371(6494): 221–226

DOI PMID

74
Walker L, Carlson A, Tan-Pertel H T, Weinmaster G, Gasson J (2001). The notch receptor and its ligands are selectively expressed during hematopoietic development in the mouse. Stem Cells, 19(6): 543–552

DOI PMID

75
Wang L, Li L, Menendez P, Cerdan C, Bhatia M (2005). Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood, 105(12): 4598–4603

DOI PMID

76
Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P, Martin T, Rouleau A, Bhatia M (2004). Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity, 21(1): 31–41

DOI PMID

77
Wareing S, Eliades A, Lacaud G, Kouskoff V (2012). ETV2 expression marks blood and endothelium precursors, including hemogenic endothelium, at the onset of blood development. Dev Dyn, 241: 1454–1464

78
Warren A J, Colledge W H, Carlton M B, Evans M J, Smith A J, Rabbitts T H (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell, 78(1): 45–57

DOI PMID

79
Weisel K C, Gao Y, Shieh J H, Moore M A (2006). Stromal cell lines from the aorta-gonado-mesonephros region are potent supporters of murine and human hematopoiesis. Exp Hematol, 34(11): 1505–1516

DOI PMID

80
Weiss M J, Keller G, Orkin S H (1994). Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev, 8(10): 1184–1197

DOI PMID

81
Wiles M V, Johansson B M (1997). Analysis of factors controlling primary germ layer formation and early hematopoiesis using embryonic stem cell in vitro differentiation. Leukemia, 11(Suppl 3): 454–456

PMID

82
Wiles M V, Keller G (1991). Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development, 111(2): 259–267

PMID

83
Wu H, Liu X, Jaenisch R, Lodish H F (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 83(1): 59–67

DOI PMID

84
Zafonte B T, Liu S, Lynch-Kattman M, Torregroza I, Benvenuto L, Kennedy M, Keller G, Evans T (2007). Smad1 expands the hemangioblast population within a limited developmental window. Blood, 109(2): 516–523

DOI PMID

85
Zambidis E T, Peault B, Park T S, Bunz F, Civin C I (2005). Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood, 106(3): 860–870

DOI PMID

86
Zhang H, Nieves J L, Fraser S T, Isern J, Douvaras P, Papatsenko D, D’Souza S L, Lemischka I R, Dyer M A, Baron M H (2014). Expression of podocalyxin separates the hematopoietic and vascular potentials of mouse embryonic stem cell-derived mesoderm. Stem Cells, 32(1): 191–203

DOI PMID

87
Zhang L, Magli A, Catanese J, Xu Z, Kyba M, Perlingeiro R C (2011). Modulation of TGF-β signaling by endoglin in murine hemangioblast development and primitive hematopoiesis. Blood, 118(1): 88–97

DOI PMID

88
Zhang W J, Park C, Arentson E, Choi K (2005). Modulation of hematopoietic and endothelial cell differentiation from mouse embryonic stem cells by different culture conditions. Blood, 105(1): 111–114

DOI PMID

89
Zheng J, Kitajima K, Sakai E, Kimura T, Minegishi N, Yamamoto M, Nakano T (2006). Differential effects of GATA-1 on proliferation and differentiation of erythroid lineage cells. Blood, 107(2): 520–527

DOI PMID

90
Zou G M, Chan R J, Shelley W C, Yoder M C (2006). Reduction of Shp-2 expression by small interfering RNA reduces murine embryonic stem cell-derived in vitro hematopoietic differentiation. Stem Cells, 24(3): 587–594

DOI PMID

91
Zou G M, Luo M H, Reed A, Kelley M R, Yoder M C (2007). Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain. Blood, 109(5): 1917–1922

DOI PMID

Outlines

/