Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems
Received date: 30 May 2014
Accepted date: 04 Aug 2014
Published date: 11 Oct 2014
Copyright
The onset of hematopoiesis in mammals is defined by generation of primitive erythrocytes and macrophage progenitors in embryonic yolk sac. Laboratories have met the challenge of transient and swiftly changing specification events from ventral mesoderm through multipotent progenitors and maturing lineage-restricted hematopoietic subtypes, by developing powerful in vitro experimental models to interrogate hematopoietic ontogeny. Most importantly, studies of differentiating embryonic stem cell derivatives in embryoid body and stromal coculture systems have identified crucial roles for transcription factor networks (e.g. Gata1, Runx1, Scl) and signaling pathways (e.g. BMP, VEGF, WNT) in controlling stem and progenitor cell output. These and other relevant pathways have pleiotropic biological effects, and are often associated with early embryonic lethality in knockout mice. Further refinement in subsequent studies has allowed conditional expression of key regulatory genes, and isolation of progenitors via cell surface markers (e.g. FLK1) and reporter-tagged constructs, with the purpose of measuring their primitive and definitive hematopoietic potential. These observations continue to inform attempts to direct the differentiation, and augment the expansion, of progenitors in human cell culture systems that may prove useful in cell replacement therapies for hematopoietic deficiencies. The purpose of this review is to survey the extant literature on the use of differentiating murine embryonic stem cells in culture to model the developmental process of yolk sac hematopoiesis.
Key words: hematopoietic; progenitors; embryonic; stem cells; differentiation
Brandoch D. COOK . Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems[J]. Frontiers in Biology, 2014 , 9(5) : 339 -346 . DOI: 10.1007/s11515-014-1328-9
1 |
Baik J, Borges L, Magli A, Thatava T, Perlingeiro R C (2012). Effect of endoglin overexpression during embryoid body development. Exp Hematol, 40(10): 837–846
|
2 |
Bielinska M, Narita N, Heikinheimo M, Porter S B, Wilson D B (1996). Erythropoiesis and vasculogenesis in embryoid bodies lacking visceral yolk sac endoderm. Blood, 88(10): 3720–3730
|
3 |
Boros K, Lacaud G, Kouskoff V (2011). The transcription factor Mxd4 controls the proliferation of the first blood precursors at the onset of hematopoietic development in vitro. Exp Hematol, 39(11): 1090–1100
|
4 |
Chan R J, Johnson S A, Li Y, Yoder M C, Feng G S (2003). A definitive role of Shp-2 tyrosine phosphatase in mediating embryonic stem cell differentiation and hematopoiesis. Blood, 102(6): 2074–2080
|
5 |
Chanda B, Ditadi A, Iscove N N, Keller G (2013). Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell, 155(1): 215–227
|
6 |
Cheng X, Huber T L, Chen V C, Gadue P, Keller G M (2008). Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast. Development, 135(20): 3447–3458
|
7 |
Clarke D, Vegiopoulos A, Crawford A, Mucenski M, Bonifer C, Frampton J (2000). In vitro differentiation of c-myb-/- ES cells reveals that the colony forming capacity of unilineage macrophage precursors and myeloid progenitor commitment are c-Myb independent. Oncogene, 19(30): 3343–3351
|
8 |
Clarke R L, Yzaguirre A D, Yashiro-Ohtani Y, Bondue A, Blanpain C, Pear W S, Speck N A, Keller G (2013). The expression of Sox17 identifies and regulates haemogenic endothelium. Nat Cell Biol, 15(5): 502–510
|
9 |
Cook B D, Evans T (2014). BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways. Blood, 124(3): 393–402
|
10 |
Cook B D, Liu S, Evans T (2011). Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment. Blood, 117(24): 6489–6497
|
11 |
Dahl L, Richter K, Hägglund A C, Carlsson L (2008). Lhx2 expression promotes self-renewal of a distinct multipotential hematopoietic progenitor cell in embryonic stem cell-derived embryoid bodies. PLoS ONE, 3(4): e2025
|
12 |
Doetschman T C, Eistetter H, Katz M, Schmidt W, Kemler R (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol, 87: 27–45
|
13 |
Era T, Izumi N, Hayashi M, Tada S, Nishikawa S, Nishikawa S (2008). Multiple mesoderm subsets give rise to endothelial cells, whereas hematopoietic cells are differentiated only from a restricted subset in embryonic stem cell differentiation culture. Stem Cells, 26(2): 401–411
|
14 |
Ferkowicz M J, Starr M, Xie X, Li W, Johnson S A, Shelley W C, Morrison P R, Yoder M C (2003). CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development, 130(18): 4393–4403
|
15 |
Fujimoto T T, Kohata S, Suzuki H, Miyazaki H, Fujimura K (2003). Production of functional platelets by differentiated embryonic stem (ES) cells in vitro. Blood, 102(12): 4044–4051
|
16 |
Gandillet A, Serrano A G, Pearson S, Lie-A-Ling M, Lacaud G, Kouskoff V (2009). Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood, 114(23): 4813–4822
|
17 |
Grigoriadis A E, Kennedy M, Bozec A, Brunton F, Stenbeck G, Park I H, Wagner E F, Keller G M (2010). Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood, 115(14): 2769–2776
|
18 |
Hadland B K, Huppert S S, Kanungo J, Xue Y, Jiang R, Gridley T, Conlon R A, Cheng A M, Kopan R, Longmore G D (2004). A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood, 104(10): 3097–3105
|
19 |
Helgason C D, Sauvageau G, Lawrence H J, Largman C, Humphries R K (1996). Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated in vitro. Blood, 87(7): 2740–2749
|
20 |
Hidaka M, Stanford W L, Bernstein A (1999). Conditional requirement for the Flk-1 receptor in the in vitro generation of early hematopoietic cells. Proc Natl Acad Sci USA, 96(13): 7370–7375
|
21 |
Irion S, Clarke R L, Luche H, Kim I, Morrison S J, Fehling H J, Keller G M (2010). Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development, 137(17): 2829–2839
|
22 |
Jackson M, Axton R A, Taylor A H, Wilson J A, Gordon-Keylock S A, Kokkaliaris K D, Brickman J M, Schulz H, Hummel O, Hubner N, Forrester L M (2012). HOXB4 can enhance the differentiation of embryonic stem cells by modulating the hematopoietic niche. Stem Cells, 30(2): 150–160
|
23 |
Johansson B M, Wiles M V (1995). Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol, 15(1): 141–151
|
24 |
Keller G, Kennedy M, Papayannopoulou T, Wiles M V (1993). Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol, 13(1): 473–486
|
25 |
Keller G, Wall C, Fong A Z, Hawley T S, Hawley R G (1998). Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential. Blood, 92(3): 877–887
|
26 |
Kennedy M, D’Souza S L, Lynch-Kattman M, Schwantz S, Keller G (2007). Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood, 109(7): 2679–2687
|
27 |
Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, Keller G (1997). A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature, 386(6624): 488–493
|
28 |
Kingsley P D, Malik J, Fantauzzo K A, Palis J (2004). Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood, 104(1): 19–25
|
29 |
Kitajima K, Kojima M, Nakajima K, Kondo S, Hara T, Miyajima A, Takeuchi T (1999). Definitive but not primitive hematopoiesis is impaired in jumonji mutant mice. Blood, 93(1): 87–95
|
30 |
Klimchenko O, Mori M, Distefano A, Langlois T, Larbret F, Lecluse Y, Feraud O, Vainchenker W, Norol F, Debili N (2009). A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. Blood, 114(8): 1506–1517
|
31 |
Krause D S, Mucenski M L, Lawler A M, May W S (1998). CD34 expression by embryonic hematopoietic and endothelial cells does not require c-Myb. Exp Hematol, 26(11): 1086–1092
|
32 |
Kyba M, Perlingeiro R C, Daley G Q (2002). HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell, 109(1): 29–37
|
33 |
Kyba M, Perlingeiro R C, Hoover R R, Lu C W, Pierce J, Daley G Q (2003). Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proc Natl Acad Sci USA, 100(Suppl 1): 11904–11910
|
34 |
Lacaud G, Gore L, Kennedy M, Kouskoff V, Kingsley P, Hogan C, Carlsson L, Speck N, Palis J, Keller G (2002). Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood, 100(2): 458–466
|
35 |
Laranjeiro R, Alcobia I, Neves H, Gomes A C, Saavedra P, Carvalho C C, Duarte A, Cidadão A, Parreira L (2012). The notch ligand delta-like 4 regulates multiple stages of early hemato-vascular development. PLoS ONE, 7(4): e34553
|
36 |
Lengerke C, McKinney-Freeman S, Naveiras O, Yates F, Wang Y, Bansal D, Daley G Q (2007). The cdx-hox pathway in hematopoietic stem cell formation from embryonic stem cells. Ann N Y Acad Sci, 1106(1): 197–208
|
37 |
Li X, Xiong J W, Shelley C S, Park H, Arnaout M A (2006). The transcription factor ZBP-89 controls generation of the hematopoietic lineage in zebrafish and mouse embryonic stem cells. Development, 133(18): 3641–3650
|
38 |
Lichanska A M, Browne C M, Henkel G W, Murphy K M, Ostrowski M C, McKercher S R, Maki R A, Hume D A (1999). Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood, 94(1): 127–138
|
39 |
Liu B, Sun Y, Jiang F, Zhang S, Wu Y, Lan Y, Yang X, Mao N (2003). Disruption of Smad5 gene leads to enhanced proliferation of high-proliferative potential precursors during embryonic hematopoiesis. Blood, 101(1): 124–133
|
40 |
Lu L S, Wang S J, Auerbach R (1996). In vitro and in vivo differentiation into B cells, T cells, and myeloid cells of primitive yolk sac hematopoietic precursor cells expanded>100-fold by coculture with a clonal yolk sac endothelial cell line. Proc Natl Acad Sci USA, 93(25): 14782–14787
|
41 |
Lux C T, Yoshimoto M, McGrath K, Conway S J, Palis J, Yoder M C (2008). All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood, 111(7): 3435–3438
|
42 |
Martin R, Lahlil R, Damert A, Miquerol L, Nagy A, Keller G, Hoang T (2004). SCL interacts with VEGF to suppress apoptosis at the onset of hematopoiesis. Development, 131(3): 693–702
|
43 |
McLeod D L, Shreeve M M, Axelrad A A (1974). Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU-E. Blood, 44(4): 517–534
|
44 |
McReynolds L J, Gupta S, Figueroa M E, Mullins M C, Evans T (2007). Smad1 and Smad5 differentially regulate embryonic hematopoiesis. Blood, 110(12): 3881–3890
|
45 |
Miller J D, Stacy T, Liu P P, Speck N A (2001). Core-binding factor β (CBFβ), but not CBFbeta-smooth muscle myosin heavy chain, rescues definitive hematopoiesis in CBFβ-deficient embryonic stem cells. Blood, 97(8): 2248–2256
|
46 |
Nakano T, Kodama H, Honjo T (1996). In vitro development of primitive and definitive erythrocytes from different precursors. Science, 272(5262): 722–724
|
47 |
Nogueira M M, Mitjavila-Garcia M T, Le Pesteur F, Filippi M D, Vainchenker W, Dubart Kupperschmitt A, Sainteny F (2000). Regulation of Id gene expression during embryonic stem cell-derived hematopoietic differentiation. Biochem Biophys Res Commun, 276(2): 803–812
|
48 |
Nostro M C, Cheng X, Keller G M, Gadue P (2008). Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell, 2(1): 60–71
|
49 |
Okuda T, van Deursen J, Hiebert S W, Grosveld G, Downing J R (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84(2): 321–330
|
50 |
Otani T, Inoue T, Tsuji-Takayama K, Ijiri Y, Nakamura S, Motoda R, Orita K (2005). Progenitor analysis of primitive erythropoiesis generated from in vitro culture of embryonic stem cells. Exp Hematol, 33(6): 632–640
|
51 |
Otani T, Nakamura S, Inoue T, Ijiri Y, Tsuji-Takayama K, Motoda R, Orita K (2004). Erythroblasts derived in vitro from embryonic stem cells in the presence of erythropoietin do not express the TER-119 antigen. Exp Hematol, 32(7): 607–613
|
52 |
Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999). Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development, 126(22): 5073–5084
|
53 |
Pearson S, Lancrin C, Lacaud G, Kouskoff V (2010). The sequential expression of CD40 and Icam2 defines progressive steps in the formation of blood precursors from the mesoderm germ layer. Stem Cells, 28(6): 1089–1098
|
54 |
Pereira C F, Chang B, Qiu J, Niu X, Papatsenko D, Hendry C E, Clark N R, Nomura-Kitabayashi A, Kovacic J C, Ma’ayan A, Schaniel C, Lemischka I R, Moore K (2013). Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell, 13(2): 205–218
|
55 |
Perlingeiro R C, Kyba M, Bodie S, Daley G Q (2003). A role for thrombopoietin in hemangioblast development. Stem Cells, 21(3): 272–280
|
56 |
Perlingeiro R C, Kyba M, Daley G Q (2001). Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential. Development, 128(22): 4597–4604
|
57 |
Pick M, Azzola L, Mossman A, Stanley E G, Elefanty A G (2007). Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells, 25(9): 2206–2214
|
58 |
Pineault N, Helgason C D, Lawrence H J, Humphries R K (2002). Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol, 30(1): 49–57
|
59 |
Robb L, Elwood N J, Elefanty A G, Köntgen F, Li R, Barnett L D, Begley C G (1996). The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J, 15(16): 4123–4129
|
60 |
Robb L, Lyons I, Li R, Hartley L, Köntgen F, Harvey R P, Metcalf D, Begley C G (1995). Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA, 92(15): 7075–7079
|
61 |
Saleque S, Cameron S, Orkin S H (2002). The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev, 16(3): 301–306
|
62 |
Sandler V M, Lis R, Liu Y, Kedem A, James D, Elemento O, Butler J M, Scandura J M, Rafii S (2014). Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature, 511(7509): 312–318
|
63 |
Sauvageau G, Thorsteinsdottir U, Eaves C J, Lawrence H J, Largman C, Lansdorp P M, Humphries R K (1995). Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev, 9(14): 1753–1765
|
64 |
Shalaby F, Ho J, Stanford W L, Fischer K D, Schuh A C, Schwartz L, Bernstein A, Rossant J (1997). A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell, 89(6): 981–990
|
65 |
Shivdasani R A, Mayer E L, Orkin S H (1995). Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature, 373(6513): 432–434
|
66 |
Simon M C, Pevny L, Wiles M V, Keller G, Costantini F, Orkin S H (1992). Rescue of erythroid development in gene targeted GATA-1- mouse embryonic stem cells. Nat Genet, 1(2): 92–98
|
67 |
Southwood C M, Downs K M, Bieker J J (1996). Erythroid Kruppel-like factor exhibits an early and sequentially localized pattern of expression during mammalian erythroid ontogeny. Dev Dyn, 20: 248–259
|
68 |
Stephenson J R, Axelrad A A, McLeod D L, Shreeve M M (1971). Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA, 68(7): 1542–1546
|
69 |
Sturgeon C M, Chicha L, Ditadi A, Zhou Q, McGrath K E, Palis J, Hammond S M, Wang S, Olson E N, Keller G (2012). Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells. Dev Cell, 23(1): 45–57
|
70 |
Sturgeon C M, Ditadi A, Awong G, Kennedy M, Keller G (2014). Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol, 32(6): 554–561
|
71 |
Suwabe N, Takahashi S, Nakano T, Yamamoto M (1998). GATA-1 regulates growth and differentiation of definitive erythroid lineage cells during in vitro ES cell differentiation. Blood, 92(11): 4108–4118
|
72 |
Tober J, Koniski A, McGrath K E, Vemishetti R, Emerson R, de Mesy-Bentley K K, Waugh R, Palis J (2007). The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood, 109(4): 1433–1441
|
73 |
Tsai F Y, Keller G, Kuo F C, Weiss M, Chen J, Rosenblatt M, Alt F W, Orkin S H (1994). An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature, 371(6494): 221–226
|
74 |
Walker L, Carlson A, Tan-Pertel H T, Weinmaster G, Gasson J (2001). The notch receptor and its ligands are selectively expressed during hematopoietic development in the mouse. Stem Cells, 19(6): 543–552
|
75 |
Wang L, Li L, Menendez P, Cerdan C, Bhatia M (2005). Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood, 105(12): 4598–4603
|
76 |
Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P, Martin T, Rouleau A, Bhatia M (2004). Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity, 21(1): 31–41
|
77 |
Wareing S, Eliades A, Lacaud G, Kouskoff V (2012). ETV2 expression marks blood and endothelium precursors, including hemogenic endothelium, at the onset of blood development. Dev Dyn, 241: 1454–1464
|
78 |
Warren A J, Colledge W H, Carlton M B, Evans M J, Smith A J, Rabbitts T H (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell, 78(1): 45–57
|
79 |
Weisel K C, Gao Y, Shieh J H, Moore M A (2006). Stromal cell lines from the aorta-gonado-mesonephros region are potent supporters of murine and human hematopoiesis. Exp Hematol, 34(11): 1505–1516
|
80 |
Weiss M J, Keller G, Orkin S H (1994). Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev, 8(10): 1184–1197
|
81 |
Wiles M V, Johansson B M (1997). Analysis of factors controlling primary germ layer formation and early hematopoiesis using embryonic stem cell in vitro differentiation. Leukemia, 11(Suppl 3): 454–456
|
82 |
Wiles M V, Keller G (1991). Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development, 111(2): 259–267
|
83 |
Wu H, Liu X, Jaenisch R, Lodish H F (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 83(1): 59–67
|
84 |
Zafonte B T, Liu S, Lynch-Kattman M, Torregroza I, Benvenuto L, Kennedy M, Keller G, Evans T (2007). Smad1 expands the hemangioblast population within a limited developmental window. Blood, 109(2): 516–523
|
85 |
Zambidis E T, Peault B, Park T S, Bunz F, Civin C I (2005). Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood, 106(3): 860–870
|
86 |
Zhang H, Nieves J L, Fraser S T, Isern J, Douvaras P, Papatsenko D, D’Souza S L, Lemischka I R, Dyer M A, Baron M H (2014). Expression of podocalyxin separates the hematopoietic and vascular potentials of mouse embryonic stem cell-derived mesoderm. Stem Cells, 32(1): 191–203
|
87 |
Zhang L, Magli A, Catanese J, Xu Z, Kyba M, Perlingeiro R C (2011). Modulation of TGF-β signaling by endoglin in murine hemangioblast development and primitive hematopoiesis. Blood, 118(1): 88–97
|
88 |
Zhang W J, Park C, Arentson E, Choi K (2005). Modulation of hematopoietic and endothelial cell differentiation from mouse embryonic stem cells by different culture conditions. Blood, 105(1): 111–114
|
89 |
Zheng J, Kitajima K, Sakai E, Kimura T, Minegishi N, Yamamoto M, Nakano T (2006). Differential effects of GATA-1 on proliferation and differentiation of erythroid lineage cells. Blood, 107(2): 520–527
|
90 |
Zou G M, Chan R J, Shelley W C, Yoder M C (2006). Reduction of Shp-2 expression by small interfering RNA reduces murine embryonic stem cell-derived in vitro hematopoietic differentiation. Stem Cells, 24(3): 587–594
|
91 |
Zou G M, Luo M H, Reed A, Kelley M R, Yoder M C (2007). Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain. Blood, 109(5): 1917–1922
|
/
〈 | 〉 |