Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems

Brandoch D. COOK

PDF(419 KB)
PDF(419 KB)
Front. Biol. ›› 2014, Vol. 9 ›› Issue (5) : 339-346. DOI: 10.1007/s11515-014-1328-9
REVIEW
REVIEW

Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems

Author information +
History +

Abstract

The onset of hematopoiesis in mammals is defined by generation of primitive erythrocytes and macrophage progenitors in embryonic yolk sac. Laboratories have met the challenge of transient and swiftly changing specification events from ventral mesoderm through multipotent progenitors and maturing lineage-restricted hematopoietic subtypes, by developing powerful in vitro experimental models to interrogate hematopoietic ontogeny. Most importantly, studies of differentiating embryonic stem cell derivatives in embryoid body and stromal coculture systems have identified crucial roles for transcription factor networks (e.g. Gata1, Runx1, Scl) and signaling pathways (e.g. BMP, VEGF, WNT) in controlling stem and progenitor cell output. These and other relevant pathways have pleiotropic biological effects, and are often associated with early embryonic lethality in knockout mice. Further refinement in subsequent studies has allowed conditional expression of key regulatory genes, and isolation of progenitors via cell surface markers (e.g. FLK1) and reporter-tagged constructs, with the purpose of measuring their primitive and definitive hematopoietic potential. These observations continue to inform attempts to direct the differentiation, and augment the expansion, of progenitors in human cell culture systems that may prove useful in cell replacement therapies for hematopoietic deficiencies. The purpose of this review is to survey the extant literature on the use of differentiating murine embryonic stem cells in culture to model the developmental process of yolk sac hematopoiesis.

Keywords

hematopoietic / progenitors / embryonic / stem cells / differentiation

Cite this article

Download citation ▾
Brandoch D. COOK. Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems. Front. Biol., 2014, 9(5): 339‒346 https://doi.org/10.1007/s11515-014-1328-9

References

[1]
Baik J, Borges L, Magli A, Thatava T, Perlingeiro R C (2012). Effect of endoglin overexpression during embryoid body development. Exp Hematol, 40(10): 837–846
CrossRef Pubmed Google scholar
[2]
Bielinska M, Narita N, Heikinheimo M, Porter S B, Wilson D B (1996). Erythropoiesis and vasculogenesis in embryoid bodies lacking visceral yolk sac endoderm. Blood, 88(10): 3720–3730
Pubmed
[3]
Boros K, Lacaud G, Kouskoff V (2011). The transcription factor Mxd4 controls the proliferation of the first blood precursors at the onset of hematopoietic development in vitro. Exp Hematol, 39(11): 1090–1100
CrossRef Pubmed Google scholar
[4]
Chan R J, Johnson S A, Li Y, Yoder M C, Feng G S (2003). A definitive role of Shp-2 tyrosine phosphatase in mediating embryonic stem cell differentiation and hematopoiesis. Blood, 102(6): 2074–2080
CrossRef Pubmed Google scholar
[5]
Chanda B, Ditadi A, Iscove N N, Keller G (2013). Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell, 155(1): 215–227
CrossRef Pubmed Google scholar
[6]
Cheng X, Huber T L, Chen V C, Gadue P, Keller G M (2008). Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast. Development, 135(20): 3447–3458
CrossRef Pubmed Google scholar
[7]
Clarke D, Vegiopoulos A, Crawford A, Mucenski M, Bonifer C, Frampton J (2000). In vitro differentiation of c-myb-/- ES cells reveals that the colony forming capacity of unilineage macrophage precursors and myeloid progenitor commitment are c-Myb independent. Oncogene, 19(30): 3343–3351
CrossRef Pubmed Google scholar
[8]
Clarke R L, Yzaguirre A D, Yashiro-Ohtani Y, Bondue A, Blanpain C, Pear W S, Speck N A, Keller G (2013). The expression of Sox17 identifies and regulates haemogenic endothelium. Nat Cell Biol, 15(5): 502–510
CrossRef Pubmed Google scholar
[9]
Cook B D, Evans T (2014). BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways. Blood, 124(3): 393–402
CrossRef Pubmed Google scholar
[10]
Cook B D, Liu S, Evans T (2011). Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment. Blood, 117(24): 6489–6497
CrossRef Pubmed Google scholar
[11]
Dahl L, Richter K, Hägglund A C, Carlsson L (2008). Lhx2 expression promotes self-renewal of a distinct multipotential hematopoietic progenitor cell in embryonic stem cell-derived embryoid bodies. PLoS ONE, 3(4): e2025
CrossRef Pubmed Google scholar
[12]
Doetschman T C, Eistetter H, Katz M, Schmidt W, Kemler R (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol, 87: 27–45
Pubmed
[13]
Era T, Izumi N, Hayashi M, Tada S, Nishikawa S, Nishikawa S (2008). Multiple mesoderm subsets give rise to endothelial cells, whereas hematopoietic cells are differentiated only from a restricted subset in embryonic stem cell differentiation culture. Stem Cells, 26(2): 401–411
CrossRef Pubmed Google scholar
[14]
Ferkowicz M J, Starr M, Xie X, Li W, Johnson S A, Shelley W C, Morrison P R, Yoder M C (2003). CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development, 130(18): 4393–4403
CrossRef Pubmed Google scholar
[15]
Fujimoto T T, Kohata S, Suzuki H, Miyazaki H, Fujimura K (2003). Production of functional platelets by differentiated embryonic stem (ES) cells in vitro. Blood, 102(12): 4044–4051
CrossRef Pubmed Google scholar
[16]
Gandillet A, Serrano A G, Pearson S, Lie-A-Ling M, Lacaud G, Kouskoff V (2009). Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood, 114(23): 4813–4822
CrossRef Pubmed Google scholar
[17]
Grigoriadis A E, Kennedy M, Bozec A, Brunton F, Stenbeck G, Park I H, Wagner E F, Keller G M (2010). Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood, 115(14): 2769–2776
CrossRef Pubmed Google scholar
[18]
Hadland B K, Huppert S S, Kanungo J, Xue Y, Jiang R, Gridley T, Conlon R A, Cheng A M, Kopan R, Longmore G D (2004). A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood, 104(10): 3097–3105
CrossRef Pubmed Google scholar
[19]
Helgason C D, Sauvageau G, Lawrence H J, Largman C, Humphries R K (1996). Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated in vitro. Blood, 87(7): 2740–2749
Pubmed
[20]
Hidaka M, Stanford W L, Bernstein A (1999). Conditional requirement for the Flk-1 receptor in the in vitro generation of early hematopoietic cells. Proc Natl Acad Sci USA, 96(13): 7370–7375
CrossRef Pubmed Google scholar
[21]
Irion S, Clarke R L, Luche H, Kim I, Morrison S J, Fehling H J, Keller G M (2010). Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development, 137(17): 2829–2839
CrossRef Pubmed Google scholar
[22]
Jackson M, Axton R A, Taylor A H, Wilson J A, Gordon-Keylock S A, Kokkaliaris K D, Brickman J M, Schulz H, Hummel O, Hubner N, Forrester L M (2012). HOXB4 can enhance the differentiation of embryonic stem cells by modulating the hematopoietic niche. Stem Cells, 30(2): 150–160
CrossRef Pubmed Google scholar
[23]
Johansson B M, Wiles M V (1995). Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol, 15(1): 141–151
Pubmed
[24]
Keller G, Kennedy M, Papayannopoulou T, Wiles M V (1993). Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol, 13(1): 473–486
Pubmed
[25]
Keller G, Wall C, Fong A Z, Hawley T S, Hawley R G (1998). Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential. Blood, 92(3): 877–887
Pubmed
[26]
Kennedy M, D’Souza S L, Lynch-Kattman M, Schwantz S, Keller G (2007). Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood, 109(7): 2679–2687
Pubmed
[27]
Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, Keller G (1997). A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature, 386(6624): 488–493
CrossRef Pubmed Google scholar
[28]
Kingsley P D, Malik J, Fantauzzo K A, Palis J (2004). Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood, 104(1): 19–25
CrossRef Pubmed Google scholar
[29]
Kitajima K, Kojima M, Nakajima K, Kondo S, Hara T, Miyajima A, Takeuchi T (1999). Definitive but not primitive hematopoiesis is impaired in jumonji mutant mice. Blood, 93(1): 87–95
Pubmed
[30]
Klimchenko O, Mori M, Distefano A, Langlois T, Larbret F, Lecluse Y, Feraud O, Vainchenker W, Norol F, Debili N (2009). A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. Blood, 114(8): 1506–1517
CrossRef Pubmed Google scholar
[31]
Krause D S, Mucenski M L, Lawler A M, May W S (1998). CD34 expression by embryonic hematopoietic and endothelial cells does not require c-Myb. Exp Hematol, 26(11): 1086–1092
Pubmed
[32]
Kyba M, Perlingeiro R C, Daley G Q (2002). HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell, 109(1): 29–37
CrossRef Pubmed Google scholar
[33]
Kyba M, Perlingeiro R C, Hoover R R, Lu C W, Pierce J, Daley G Q (2003). Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proc Natl Acad Sci USA, 100(Suppl 1): 11904–11910
CrossRef Pubmed Google scholar
[34]
Lacaud G, Gore L, Kennedy M, Kouskoff V, Kingsley P, Hogan C, Carlsson L, Speck N, Palis J, Keller G (2002). Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood, 100(2): 458–466
CrossRef Pubmed Google scholar
[35]
Laranjeiro R, Alcobia I, Neves H, Gomes A C, Saavedra P, Carvalho C C, Duarte A, Cidadão A, Parreira L (2012). The notch ligand delta-like 4 regulates multiple stages of early hemato-vascular development. PLoS ONE, 7(4): e34553
CrossRef Pubmed Google scholar
[36]
Lengerke C, McKinney-Freeman S, Naveiras O, Yates F, Wang Y, Bansal D, Daley G Q (2007). The cdx-hox pathway in hematopoietic stem cell formation from embryonic stem cells. Ann N Y Acad Sci, 1106(1): 197–208
CrossRef Pubmed Google scholar
[37]
Li X, Xiong J W, Shelley C S, Park H, Arnaout M A (2006). The transcription factor ZBP-89 controls generation of the hematopoietic lineage in zebrafish and mouse embryonic stem cells. Development, 133(18): 3641–3650
CrossRef Pubmed Google scholar
[38]
Lichanska A M, Browne C M, Henkel G W, Murphy K M, Ostrowski M C, McKercher S R, Maki R A, Hume D A (1999). Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood, 94(1): 127–138
Pubmed
[39]
Liu B, Sun Y, Jiang F, Zhang S, Wu Y, Lan Y, Yang X, Mao N (2003). Disruption of Smad5 gene leads to enhanced proliferation of high-proliferative potential precursors during embryonic hematopoiesis. Blood, 101(1): 124–133
CrossRef Pubmed Google scholar
[40]
Lu L S, Wang S J, Auerbach R (1996). In vitro and in vivo differentiation into B cells, T cells, and myeloid cells of primitive yolk sac hematopoietic precursor cells expanded>100-fold by coculture with a clonal yolk sac endothelial cell line. Proc Natl Acad Sci USA, 93(25): 14782–14787
CrossRef Pubmed Google scholar
[41]
Lux C T, Yoshimoto M, McGrath K, Conway S J, Palis J, Yoder M C (2008). All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood, 111(7): 3435–3438
CrossRef Pubmed Google scholar
[42]
Martin R, Lahlil R, Damert A, Miquerol L, Nagy A, Keller G, Hoang T (2004). SCL interacts with VEGF to suppress apoptosis at the onset of hematopoiesis. Development, 131(3): 693–702
CrossRef Pubmed Google scholar
[43]
McLeod D L, Shreeve M M, Axelrad A A (1974). Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU-E. Blood, 44(4): 517–534
Pubmed
[44]
McReynolds L J, Gupta S, Figueroa M E, Mullins M C, Evans T (2007). Smad1 and Smad5 differentially regulate embryonic hematopoiesis. Blood, 110(12): 3881–3890
CrossRef Pubmed Google scholar
[45]
Miller J D, Stacy T, Liu P P, Speck N A (2001). Core-binding factor β (CBFβ), but not CBFbeta-smooth muscle myosin heavy chain, rescues definitive hematopoiesis in CBFβ-deficient embryonic stem cells. Blood, 97(8): 2248–2256
CrossRef Pubmed Google scholar
[46]
Nakano T, Kodama H, Honjo T (1996). In vitro development of primitive and definitive erythrocytes from different precursors. Science, 272(5262): 722–724
CrossRef Pubmed Google scholar
[47]
Nogueira M M, Mitjavila-Garcia M T, Le Pesteur F, Filippi M D, Vainchenker W, Dubart Kupperschmitt A, Sainteny F (2000). Regulation of Id gene expression during embryonic stem cell-derived hematopoietic differentiation. Biochem Biophys Res Commun, 276(2): 803–812
CrossRef Pubmed Google scholar
[48]
Nostro M C, Cheng X, Keller G M, Gadue P (2008). Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell, 2(1): 60–71
CrossRef Pubmed Google scholar
[49]
Okuda T, van Deursen J, Hiebert S W, Grosveld G, Downing J R (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84(2): 321–330
CrossRef Pubmed Google scholar
[50]
Otani T, Inoue T, Tsuji-Takayama K, Ijiri Y, Nakamura S, Motoda R, Orita K (2005). Progenitor analysis of primitive erythropoiesis generated from in vitro culture of embryonic stem cells. Exp Hematol, 33(6): 632–640
CrossRef Pubmed Google scholar
[51]
Otani T, Nakamura S, Inoue T, Ijiri Y, Tsuji-Takayama K, Motoda R, Orita K (2004). Erythroblasts derived in vitro from embryonic stem cells in the presence of erythropoietin do not express the TER-119 antigen. Exp Hematol, 32(7): 607–613
CrossRef Pubmed Google scholar
[52]
Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999). Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development, 126(22): 5073–5084
Pubmed
[53]
Pearson S, Lancrin C, Lacaud G, Kouskoff V (2010). The sequential expression of CD40 and Icam2 defines progressive steps in the formation of blood precursors from the mesoderm germ layer. Stem Cells, 28(6): 1089–1098
CrossRef Pubmed Google scholar
[54]
Pereira C F, Chang B, Qiu J, Niu X, Papatsenko D, Hendry C E, Clark N R, Nomura-Kitabayashi A, Kovacic J C, Ma’ayan A, Schaniel C, Lemischka I R, Moore K (2013). Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell, 13(2): 205–218
CrossRef Pubmed Google scholar
[55]
Perlingeiro R C, Kyba M, Bodie S, Daley G Q (2003). A role for thrombopoietin in hemangioblast development. Stem Cells, 21(3): 272–280
CrossRef Pubmed Google scholar
[56]
Perlingeiro R C, Kyba M, Daley G Q (2001). Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential. Development, 128(22): 4597–4604
Pubmed
[57]
Pick M, Azzola L, Mossman A, Stanley E G, Elefanty A G (2007). Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells, 25(9): 2206–2214
CrossRef Pubmed Google scholar
[58]
Pineault N, Helgason C D, Lawrence H J, Humphries R K (2002). Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol, 30(1): 49–57
CrossRef Pubmed Google scholar
[59]
Robb L, Elwood N J, Elefanty A G, Köntgen F, Li R, Barnett L D, Begley C G (1996). The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J, 15(16): 4123–4129
Pubmed
[60]
Robb L, Lyons I, Li R, Hartley L, Köntgen F, Harvey R P, Metcalf D, Begley C G (1995). Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA, 92(15): 7075–7079
CrossRef Pubmed Google scholar
[61]
Saleque S, Cameron S, Orkin S H (2002). The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev, 16(3): 301–306
CrossRef Pubmed Google scholar
[62]
Sandler V M, Lis R, Liu Y, Kedem A, James D, Elemento O, Butler J M, Scandura J M, Rafii S (2014). Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature, 511(7509): 312–318
CrossRef Pubmed Google scholar
[63]
Sauvageau G, Thorsteinsdottir U, Eaves C J, Lawrence H J, Largman C, Lansdorp P M, Humphries R K (1995). Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev, 9(14): 1753–1765
CrossRef Pubmed Google scholar
[64]
Shalaby F, Ho J, Stanford W L, Fischer K D, Schuh A C, Schwartz L, Bernstein A, Rossant J (1997). A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell, 89(6): 981–990
CrossRef Pubmed Google scholar
[65]
Shivdasani R A, Mayer E L, Orkin S H (1995). Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature, 373(6513): 432–434
CrossRef Pubmed Google scholar
[66]
Simon M C, Pevny L, Wiles M V, Keller G, Costantini F, Orkin S H (1992). Rescue of erythroid development in gene targeted GATA-1- mouse embryonic stem cells. Nat Genet, 1(2): 92–98
CrossRef Pubmed Google scholar
[67]
Southwood C M, Downs K M, Bieker J J (1996). Erythroid Kruppel-like factor exhibits an early and sequentially localized pattern of expression during mammalian erythroid ontogeny. Dev Dyn, 20: 248–259
[68]
Stephenson J R, Axelrad A A, McLeod D L, Shreeve M M (1971). Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA, 68(7): 1542–1546
CrossRef Pubmed Google scholar
[69]
Sturgeon C M, Chicha L, Ditadi A, Zhou Q, McGrath K E, Palis J, Hammond S M, Wang S, Olson E N, Keller G (2012). Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells. Dev Cell, 23(1): 45–57
CrossRef Pubmed Google scholar
[70]
Sturgeon C M, Ditadi A, Awong G, Kennedy M, Keller G (2014). Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol, 32(6): 554–561
CrossRef Pubmed Google scholar
[71]
Suwabe N, Takahashi S, Nakano T, Yamamoto M (1998). GATA-1 regulates growth and differentiation of definitive erythroid lineage cells during in vitro ES cell differentiation. Blood, 92(11): 4108–4118
Pubmed
[72]
Tober J, Koniski A, McGrath K E, Vemishetti R, Emerson R, de Mesy-Bentley K K, Waugh R, Palis J (2007). The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood, 109(4): 1433–1441
CrossRef Pubmed Google scholar
[73]
Tsai F Y, Keller G, Kuo F C, Weiss M, Chen J, Rosenblatt M, Alt F W, Orkin S H (1994). An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature, 371(6494): 221–226
CrossRef Pubmed Google scholar
[74]
Walker L, Carlson A, Tan-Pertel H T, Weinmaster G, Gasson J (2001). The notch receptor and its ligands are selectively expressed during hematopoietic development in the mouse. Stem Cells, 19(6): 543–552
CrossRef Pubmed Google scholar
[75]
Wang L, Li L, Menendez P, Cerdan C, Bhatia M (2005). Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood, 105(12): 4598–4603
CrossRef Pubmed Google scholar
[76]
Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P, Martin T, Rouleau A, Bhatia M (2004). Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity, 21(1): 31–41
CrossRef Pubmed Google scholar
[77]
Wareing S, Eliades A, Lacaud G, Kouskoff V (2012). ETV2 expression marks blood and endothelium precursors, including hemogenic endothelium, at the onset of blood development. Dev Dyn, 241: 1454–1464
[78]
Warren A J, Colledge W H, Carlton M B, Evans M J, Smith A J, Rabbitts T H (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell, 78(1): 45–57
CrossRef Pubmed Google scholar
[79]
Weisel K C, Gao Y, Shieh J H, Moore M A (2006). Stromal cell lines from the aorta-gonado-mesonephros region are potent supporters of murine and human hematopoiesis. Exp Hematol, 34(11): 1505–1516
CrossRef Pubmed Google scholar
[80]
Weiss M J, Keller G, Orkin S H (1994). Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev, 8(10): 1184–1197
CrossRef Pubmed Google scholar
[81]
Wiles M V, Johansson B M (1997). Analysis of factors controlling primary germ layer formation and early hematopoiesis using embryonic stem cell in vitro differentiation. Leukemia, 11(Suppl 3): 454–456
Pubmed
[82]
Wiles M V, Keller G (1991). Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development, 111(2): 259–267
Pubmed
[83]
Wu H, Liu X, Jaenisch R, Lodish H F (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 83(1): 59–67
CrossRef Pubmed Google scholar
[84]
Zafonte B T, Liu S, Lynch-Kattman M, Torregroza I, Benvenuto L, Kennedy M, Keller G, Evans T (2007). Smad1 expands the hemangioblast population within a limited developmental window. Blood, 109(2): 516–523
CrossRef Pubmed Google scholar
[85]
Zambidis E T, Peault B, Park T S, Bunz F, Civin C I (2005). Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood, 106(3): 860–870
CrossRef Pubmed Google scholar
[86]
Zhang H, Nieves J L, Fraser S T, Isern J, Douvaras P, Papatsenko D, D’Souza S L, Lemischka I R, Dyer M A, Baron M H (2014). Expression of podocalyxin separates the hematopoietic and vascular potentials of mouse embryonic stem cell-derived mesoderm. Stem Cells, 32(1): 191–203
CrossRef Pubmed Google scholar
[87]
Zhang L, Magli A, Catanese J, Xu Z, Kyba M, Perlingeiro R C (2011). Modulation of TGF-β signaling by endoglin in murine hemangioblast development and primitive hematopoiesis. Blood, 118(1): 88–97
CrossRef Pubmed Google scholar
[88]
Zhang W J, Park C, Arentson E, Choi K (2005). Modulation of hematopoietic and endothelial cell differentiation from mouse embryonic stem cells by different culture conditions. Blood, 105(1): 111–114
CrossRef Pubmed Google scholar
[89]
Zheng J, Kitajima K, Sakai E, Kimura T, Minegishi N, Yamamoto M, Nakano T (2006). Differential effects of GATA-1 on proliferation and differentiation of erythroid lineage cells. Blood, 107(2): 520–527
CrossRef Pubmed Google scholar
[90]
Zou G M, Chan R J, Shelley W C, Yoder M C (2006). Reduction of Shp-2 expression by small interfering RNA reduces murine embryonic stem cell-derived in vitro hematopoietic differentiation. Stem Cells, 24(3): 587–594
CrossRef Pubmed Google scholar
[91]
Zou G M, Luo M H, Reed A, Kelley M R, Yoder M C (2007). Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain. Blood, 109(5): 1917–1922
CrossRef Pubmed Google scholar

Acknowledgements

The author would like to thank Dr. Todd Evans for previewing the manuscript. Brandoch D. Cook is supported by a grant from the National Institutes of Health (NIH), K01-KD096031.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(419 KB)

Accesses

Citations

Detail

Sections
Recommended

/