REVIEW

The correlation between iron homeostasis and telomere maintenance

  • Caiguo ZHANG
Expand
  • Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA

Received date: 12 May 2014

Accepted date: 30 Jul 2014

Published date: 11 Oct 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Eukaryotic organisms require iron to sustain genome stability, cell proliferation and development. Chromosomes contain telomeres to ensure complete replications and avoid fusions. Numerous evidences reveal that iron can act directly or indirectly on telomere maintenance. In human, disruption of systemic or cellular iron homeostasis is reportedly to cause serious health problems such as iron overload (hereditary hemochromatosis), iron deficiency anemia, carcinogenesis and acceleration of aging process. These processes commonly associate with abnormal telomere length. Additionally, cells containing mutations in iron-containing proteins such as DNA polymerases (Polα, δ, and ϵ), regulator of telomere length 1 (RTEL1) and the small subunit of ribonucleotide reductases (RNRs) have abnormal telomere length. This review briefly summarizes current understandings on iron homeostasis and telomere maintenance in cancer and aging process, followed by discussing their direct and indirect correlation, and the possible regulatory mechanisms.

Cite this article

Caiguo ZHANG . The correlation between iron homeostasis and telomere maintenance[J]. Frontiers in Biology, 2014 , 9(5) : 347 -355 . DOI: 10.1007/s11515-014-1327-x

Acknowledgments

I would like to express my gratitude to Dr. Alison Thurston for critically reading the manuscript and for facilitating discussions.
1
Adams Martin A, Dionne I, Wellinger R J, Holm C (2000). The function of DNA polymerase alpha at telomeric G tails is important for telomere homeostasis. Mol Cell Biol, 20(3): 786–796

DOI PMID

2
Addinall S G, Holstein E M, Lawless C, Yu M, Chapman K, Banks A P, Ngo H P, Maringele L, Taschuk M, Young A, Ciesiolka A, Lister A L, Wipat A, Wilkinson D J, Lydall D (2011). Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS Genet, 7(4): e1001362

DOI PMID

3
Andrews N C, Schmidt P J (2007). Iron homeostasis. Annu Rev Physiol, 69(1): 69–85

DOI PMID

4
Askree S H, Yehuda T, Smolikov S, Gurevich R, Hawk J, Coker C, Krauskopf A, Kupiec M, McEachern M J (2004). A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci USA, 101(23): 8658–8663

DOI PMID

5
Aubert G, Lansdorp P M (2008). Telomeres and aging. Physiol Rev, 88(2): 557–579

DOI PMID

6
Beaumont C (2010). Multiple regulatory mechanisms act in concert to control ferroportin expression and heme iron recycling by macrophages. Haematologica, 95(8): 1233–1236

DOI PMID

7
Bischoff C, Petersen H C, Graakjaer J, Andersen-Ranberg K, Vaupel J W, Bohr V A, Kølvraa S, Christensen K (2006). No association between telomere length and survival among the elderly and oldest old. Epidemiology, 17(2): 190–194

DOI PMID

8
Brookes M J, Hughes S, Turner F E, Reynolds G, Sharma N, Ismail T, Berx G, McKie A T, Hotchin N, Anderson G J, Iqbal T, Tselepis C (2006). Modulation of iron transport proteins in human colorectal carcinogenesis. Gut, 55(10): 1449–1460

DOI PMID

9
Brown K E, Meleah Mathahs M, Broadhurst K A, Coleman M C, Ridnour L A, Schmidt W N, Spitz D R (2007). Increased hepatic telomerase activity in a rat model of iron overload: a role for altered thiol redox state? Free Radic Biol Med, 42(2): 228–235

DOI PMID

10
Calado R, Young N (2012). Telomeres in disease. F1000 Med Rep, 4: 8

PMID

11
Carson J L, Adamson, J W (2010). Iron deficiency and heart disease: ironclad evidence? Hematology, 2010(1): 348–350

12
Chung M, Chan J A, Moorthy D, Hadar N, Ratichek S J, Concannon T W, Lau J (2013). In Biomarkers for Assessing and Managing Iron Deficiency Anemia in Late-Stage Chronic Kidney Disease: Future Research Needs: Identification of Future Research Needs From. Comparative Effectiveness Review No 83 (Rockville (MD)). www.effectivehealthcare.ahrq.gov/reports/final.cfm

13
Cong Y S, Wright W E, Shay J W (2002). Human telomerase and its regulation. Microbiol Mol Biol Rev, 66(3): 407–425

DOI PMID

14
Cosme-Blanco W, Shen M F, Lazar A J, Pathak S, Lozano G, Multani A S, Chang S (2007). Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep, 8(5): 497–503

DOI PMID

15
de Lange T (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev, 19(18): 2100–2110

DOI PMID

16
de Lange T (2009). How telomeres solve the end-protection problem. Science, 326(5955): 948–952

DOI PMID

17
de Lange T (2010). Telomere biology and DNA repair: enemies with benefits. FEBS Lett, 584(17): 3673–3674

DOI PMID

18
Denchi E L, de Lange T (2007). Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature, 448(7157): 1068–1071

DOI PMID

19
Deng Z, Atanasiu C, Burg J S, Broccoli D, Lieberman P M (2003). Telomere repeat binding factors TRF1, TRF2, and hRAP1 modulate replication of Epstein-Barr virus OriP. J Virol, 77(22): 11992–12001

DOI PMID

20
Deng Z, Lezina L, Chen C J, Shtivelband S, So W, Lieberman P M (2002). Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell, 9(3): 493–503

DOI PMID

21
Denic S, Agarwal M M (2007). Nutritional iron deficiency: an evolutionary perspective. Nutrition, 23(7-8): 603–614

DOI PMID

22
Diotti R, Loayza D (2011). Shelterin complex and associated factors at human telomeres. Nucleus, 2(2): 119–135

DOI PMID

23
Dlouhy A C, Outten C E (2013). The iron metallome in eukaryotic organisms. Metal Ions in Life Sciences12: 241–278

24
Donate L E, Blasco M A (2011). Telomeres in cancer and ageing. Philos Trans R Soc Lond B Biol Sci, 366(1561): 76–84

DOI PMID

25
Fikus M U, Mieczkowski P A, Koprowski P, Rytka J, Sledziewska-Gójska E, Ciésla Z (2000). The product of the DNA damage-inducible gene of Saccharomyces cerevisiae, DIN7, specifically functions in mitochondria. Genetics, 154(1): 73–81

PMID

26
Fuster J J, Andrés V (2006). Telomere biology and cardiovascular disease. Circ Res, 99(11): 1167–1180

DOI PMID

27
Fyhrquist F, Saijonmaa O, Strandberg T (2013). The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol, 10(5): 274–283

DOI PMID

28
Ganz T (2011). Hepcidin and iron regulation, 10 years later. Blood, 117(17): 4425–4433

DOI PMID

29
Ghio A J, Stonehuerner J G, Richards J H, Crissman K M, Roggli V L, Piantadosi C A, Carraway M S (2008). Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study. Respir Res, 9(1): 10

DOI PMID

30
Green N S, Mayeux R (2006). The long and short of it: telomeres and the brain. Lancet Neurol, 5(12): 999–1000

DOI PMID

31
Gupta A, Sharma S, Reichenbach P, Marjavaara L, Nilsson A K, Lingner J, Chabes A, Rothstein R, Chang M (2013). Telomere length homeostasis responds to changes in intracellular dNTP pools. Genetics, 193(4): 1095–1105

DOI PMID

32
Hanson E H, Imperatore G, Burke W (2001). HFE gene and hereditary hemochromatosis: a HuGE review. Human Genome Epidemiology. Am J Epidemiol, 154(3): 193–206

DOI PMID

33
Hatcher H C, Singh R N, Torti F M, Torti S V (2009). Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem, 1: 1643–1670

34
Heath J L, Weiss J M, Lavau C P, Wechsler D S (2013). Iron deprivation in cancer—potential therapeutic implications. Nutrients, 5(8): 2836–2859

DOI PMID

35
Herbig U, Jobling W A, Chen B P, Chen D J, Sedivy J M (2004). Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell, 14(4): 501–513

DOI PMID

36
Houben J M, Giltay E J, Rius-Ottenheim N, Hageman G J, Kromhout D (2011). Telomere length and mortality in elderly men: the Zutphen Elderly Study. J Gerontol A Biol Sci Med Sci, 66(1): 38–44

DOI PMID

37
Huang M, Elledge S J (1997). Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol, 17(10): 6105–6113

PMID

38
Jain S, Sugawara N, Lydeard J, Vaze M, Tanguy Le Gac N, Haber J E (2009). A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev, 23(3): 291–303

DOI PMID

39
Jakupciak J P, Wang W, Barker P E, Srivastava S, Atha D H (2004). Analytical validation of telomerase activity for cancer early detection: TRAP/PCR-CE and hTERT mRNA quantification assay for high-throughput screening of tumor cells. J Mol Diagn, 6(3): 157–165

DOI PMID

40
Jian, J, Pelle E, Huang X (2009). Iron and menopause: does increased iron affect the health of postmenopausal women? Antioxidants Redox Signal, 11: 2939–2943

41
Kaplan J, McVey Ward D, Crisp R J, Philpott C C (2006). Iron-dependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta, 1763(7): 646–651

DOI PMID

42
Kaur D, Andersen J K (2002). Ironing out Parkinson’s disease: is therapeutic treatment with iron chelators a real possibility? Aging Cell, 1(1): 17–21

DOI PMID

43
Kawasaki Y, Sugino A (2001). Yeast replicative DNA polymerases and their role at the replication fork. Mol Cells, 12(3): 277–285

PMID

44
Killilea D W, Wong S L, Cahaya H S, Atamna H, Ames B N (2004). Iron accumulation during cellular senescence. Ann N Y Acad Sci, 1019(1): 365–367

DOI PMID

45
Kim Sh S H, Kaminker P, Campisi J (2002). Telomeres, aging and cancer: in search of a happy ending. Oncogene, 21(4): 503–511

DOI PMID

46
Koziel J E, Fox M J, Steding C E, Sprouse A A, Herbert B S (2011). Medical genetics and epigenetics of telomerase. J Cell Mol Med, 15(3): 457–467

DOI PMID

47
Kozlitina J, Garcia C K (2012). Red blood cell size is inversely associated with leukocyte telomere length in a large multi-ethnic population. PLoS ONE, 7(12): e51046

DOI PMID

48
Kremastinos D T, Farmakis D (2011). Iron overload cardiomyopathy in clinical practice. Circulation, 124(20): 2253–2263

DOI PMID

49
Lamy P J, Durigova A, Jacot W (2014). Iron homeostasis and anemia markers in early breast cancer: Iron and breast cancer. Clin Chim acta, 434: 34–40

50
Lawen A, Lane D J (2013). Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal, 18: 2473–2507

51
Le Guen T, Jullien L, Touzot F, Schertzer M, Gaillard L, Perderiset M, Carpentier W, Nitschke P, Picard C, Couillault G, Soulier J, Fischer A, Callebaut I, Jabado N, Londono-Vallejo A, de Villartay J P, Revy P (2013). Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum Mol Genet, 22(16): 3239–3249

DOI PMID

52
Li H, Mapolelo D T, Dingra N N, Naik S G, Lees N S, Hoffman B M, Riggs-Gelasco P J, Huynh B H, Johnson M K, Outten C E (2009). The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry, 48(40): 9569–9581

DOI PMID

53
Lill R (2009). Function and biogenesis of iron-sulphur proteins. Nature, 460(7257): 831–838

DOI PMID

54
Lis E T, O’Neill B M, Gil-Lamaignere C, Chin J K, Romesberg F E (2008). Identification of pathways controlling DNA damage induced mutation in Saccharomyces cerevisiae. DNA Repair (Amst), 7(5): 801–810

DOI PMID

55
Liu L, Berletch J B, Green J G, Pate M S, Andrews L G, Tollefsbol T O (2004). Telomerase inhibition by retinoids precedes cytodifferentiation of leukemia cells and may contribute to terminal differentiation. Mol Cancer Ther, 3(8): 1003–1009

PMID

56
Ludlow A T, Ludlow L W, Roth S M (2013). Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins. Biomed Res Int, 2013: 601368

58
Ma H, Zhou Z, Wei S, Liu Z, Pooley K A, Dunning A M, Svenson U, Roos G, Hosgood H D 3rd, Shen M, Wei Q (2011). Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS ONE, 6(6): e20466

DOI PMID

59
Mainous A G 3rd, Wright R U, Hulihan M M, Twal W O, McLaren C E, Diaz V A, McLaren G D, Argraves W S, Grant A M (2013). Telomere length and elevated iron: the influence of phenotype and HFE genotype. Am J Hematol, 88(6): 492–496

DOI PMID

60
Marques O, da Silva B M, Porto G, Lopes C (2014). Iron homeostasis in breast cancer. Cancer Lett, 347(1): 1–14

DOI PMID

61
Martínez P, Blasco M A (2011). Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer, 11(3): 161–176

DOI PMID

62
Miller J L (2013). Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med, 3(7). pii: a011866

63
Moslehi J, DePinho R A, Sahin E (2012). Telomeres and mitochondria in the aging heart. Circ Res, 110(9): 1226–1237

DOI PMID

64
Mourkioti F, Kustan J, Kraft P, Day J W, Zhao M M, Kost-Alimova M, Protopopov A, DePinho R A, Bernstein D, Meeker A K, Blau H M (2013). Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nat Cell Biol, 15(8): 895–904

DOI PMID

65
Neumann A A, Watson C M, Noble J R, Pickett H A, Tam P P, Reddel R R (2013). Alternative lengthening of telomeres in normal mammalian somatic cells. Genes Dev, 27(1): 18–23

DOI PMID

66
Njajou O T, Hsueh W C, Blackburn E H, Newman A B, Wu S H, Li R, Simonsick E M, Harris T M, Cummings S R, Cawthon R M, the Health ABC study (2009). Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J Gerontol A Biol Sci Med Sci, 64(8): 860–864

DOI PMID

67
Nordlund P, Reichard P (2006). Ribonucleotide reductases. Annu Rev Biochem, 75(1): 681–706

DOI PMID

68
Oh H, Wang S C, Prahash A, Sano M, Moravec C S, Taffet G E, Michael L H, Youker K A, Entman M L, Schneider M D (2003). Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA, 100(9): 5378–5383

DOI PMID

69
Ohya T, Kawasaki Y, Hiraga S, Kanbara S, Nakajo K, Nakashima N, Suzuki A, Sugino A (2002). The DNA polymerase domain of pol(epsilon) is required for rapid, efficient, and highly accurate chromosomal DNA replication, telomere length maintenance, and normal cell senescence in Saccharomyces cerevisiae. J Biol Chem, 277(31): 28099–28108

DOI PMID

70
Oliveira L, Drapier J C (2000). Down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Proc Natl Acad Sci USA, 97(12): 6550–6555

DOI PMID

71
Orrenius S, Nicotera P, Zhivotovsky B (2011). Cell death mechanisms and their implications in toxicology. Toxicol Sci, 119: 3–19

72
Palm W, de Lange T (2008). How shelterin protects mammalian telomeres. Annu Rev Genet, 42(1): 301–334

DOI PMID

73
Pantopoulos K (2004). Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci, 1012(1): 1–13

DOI PMID

74
Pantopoulos K, Porwal S K, Tartakoff A, Devireddy L (2012). Mechanisms of mammalian iron homeostasis. Biochemistry, 51(29): 5705–5724

DOI PMID

75
Ponka P (1997). Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood, 89(1): 1–25

PMID

76
Pouillot A, Polla A, Polla B S (2013). Iron and iron chelators: a review on potential effects on skin aging. Curr Aging Sci, 6: 225–231

77
Rehkopf D H, Dow W H, Rosero-Bixby L, Lin J, Epel E S, Blackburn E H (2013). Longer leukocyte telomere length in Costa Rica’s Nicoya Peninsula: a population-based study. Exp Gerontol, 48(11): 1266–1273

DOI PMID

78
Ritchie K B, Mallory J C, Petes T D (1999). Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol Cell Biol, 19(9): 6065–6075

PMID

79
Romero A, Ramos E, de Los Ríos C, Egea J, Del Pino J, Reiter R J (2014). A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res, 56(4): 343–370

DOI PMID

80
Rouault T, Klausner R (1997). Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul, 35: 1–19

DOI PMID

81
Sanvisens N, Bañó M C, Huang M, Puig S (2011). Regulation of ribonucleotide reductase in response to iron deficiency. Mol Cell, 44(5): 759–769

DOI PMID

82
Serrano A L, Andrés V (2004). Telomeres and cardiovascular disease: does size matter? Circ Res, 94(5): 575–584

DOI PMID

84
Shay J W, Zou Y, Hiyama E, Wright W E (2001). Telomerase and cancer. Hum Mol Genet, 10(7): 677–685

DOI PMID

85
Simonet T, Zaragosi L E, Philippe C, Lebrigand K, Schouteden C, Augereau A, Bauwens S, Ye J, Santagostino M, Giulotto E, Magdinier F, Horard B, Barbry P, Waldmann R, Gilson E (2011). The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res, 21(7): 1028–1038

DOI PMID

87
Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer M R, Schnapp G, de Lange T (2000). Control of human telomere length by TRF1 and TRF2. Mol Cell Biol, 20(5): 1659–1668

DOI PMID

88
Soe-Lin S, Apte S S, Andriopoulos B Jr, Andrews M C, Schranzhofer M, Kahawita T, Garcia-Santos D, Ponka P (2009). Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo. Proc Natl Acad Sci USA, 106(14): 5960–5965

DOI PMID

111
Stehling Q, Vashisht A A, Mascarenhas J, Jonsson Z Q, Sharma T, Netz D J, Pierik A J, Wohlschlegel J A, LillR (2012). MMS19 assembles iron-sulfur protein required for DNA metabolism and genomic integrity. Science, 337: 195–199

89
Sun J, Yang Y, Wan K, Mao N, Yu T Y, Lin Y C, DeZwaan D C, Freeman B C, Lin J J, Lue N F, Lei M (2011). Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α. Cell Res, 21(2): 258–274

DOI PMID

90
Takata H, Kanoh Y, Gunge N, Shirahige K, Matsuura A (2004). Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeres in vivo. Mol Cell, 14(4): 515–522

DOI PMID

91
Takata H, Tanaka Y, Matsuura A (2005). Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol Cell, 17(4): 573–583

DOI PMID

92
Tang D, Kang R, Zeh H J 3rd, Lotze M T (2011). High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal, 14: 1315–1335

93
Tang Y D, Katz S D (2006). Anemia in chronic heart failure: prevalence, etiology, clinical correlates, and treatment options. Circulation, 113(20): 2454–2461

DOI PMID

94
Torti S V, Torti F M (2013). Iron and cancer: more ore to be mined. Nat Rev Cancer, 13(5): 342–355

DOI PMID

95
Turrens J F (2003). Mitochondrial formation of reactive oxygen species. J Physiol, 552(Pt 2): 335–344

DOI PMID

96
Uringa E J, Youds J L, Lisaingo K, Lansdorp P M, Boulton S J (2011). RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res, 39(5): 1647–1655

DOI PMID

97
van der Harst P, van Veldhuisen D J, Samani N J (2008). Expanding the concept of telomere dysfunction in cardiovascular disease. Arterioscler Thromb Vasc Biol, 28(5): 807–808

DOI PMID

98
van Steensel B, de Lange T (1997). Control of telomere length by the human telomeric protein TRF1. Nature, 385(6618): 740–743

DOI PMID

99
Vespa L, Couvillion M, Spangler E, Shippen D E (2005). ATM and ATR make distinct contributions to chromosome end protection and the maintenance of telomeric DNA in Arabidopsis. Genes Dev, 19(18): 2111–2115

DOI PMID

100
Wang W, Deng Z, Hatcher H, Miller L D, Di X, Tesfay L, Sui G, D’Agostino R B Jr, Torti F M, Torti S V (2014). IRP2 regulates breast tumor growth. Cancer Res, 74(2): 497–507

DOI PMID

101
Watson J M, Shippen D E (2007). Telomere rapid deletion regulates telomere length in Arabidopsis thaliana. Mol Cell Biol, 27(5): 1706–1715

DOI PMID

102
White M F, Dillingham M S (2012). Iron-sulphur clusters in nucleic acid processing enzymes. Curr Opin Struct Biol, 22(1): 94–100

DOI PMID

103
Wong L S, de Boer R A, Samani N J, van Veldhuisen D J, van der Harst P (2008). Telomere biology in heart failure. Eur J Heart Fail, 10(11): 1049–1056

DOI PMID

104
Xin Z T, Beauchamp A D, Calado R T, Bradford J W, Regal J A, Shenoy A, Liang Y, Lansdorp P M, Young N S, Ly H (2007). Functional characterization of natural telomerase mutations found in patients with hematologic disorders. Blood, 109(2): 524–532

DOI PMID

105
Ye H, Rouault T A (2010). Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry, 49(24): 4945–4956

DOI PMID

106
Zavlaris M, Angelopoulou K, Vlemmas I, Papaioannou N (2009). Telomerase reverse transcriptase (TERT) expression in canine mammary tissues: a specific marker for malignancy? Anticancer Res, 29(1): 319–325

PMID

107
Zhang A S (2010). Control of systemic iron homeostasis by the hemojuvelin-hepcidin axis. Adv Nutr, 1: 38–45

108
Zhang C (2014). Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, doi: 10.1007/s13238-014-0083-7

109
Zhang Y, Lyver E R, Nakamaru-Ogiso E, Yoon H, Amutha B, Lee D W, Bi E, Ohnishi T, Daldal F, Pain D, Dancis A (2008). Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol Cell Biol, 28(18): 5569–5582

DOI PMID

110
Zhu Z, Wilson A T, Gopalakrishna K, Brown K E, Luxon B A, Schmidt W N (2010). Hepatitis C virus core protein enhances telomerase activity in Huh7 cells. J Med Virol, 82(2): 239–248

DOI PMID

Outlines

/