Role of calmodulin in neuronal Kv7/KCNQ potassium channels and epilepsy
Received date: 01 Apr 2014
Accepted date: 14 Apr 2014
Published date: 24 Jun 2014
Copyright
Neuronal Kv7/KCNQ channels are critical regulators of neuronal excitability since they potently suppress repetitive firing of action potentials. These voltage-dependent potassium channels are composed mostly of Kv7.2 / KCNQ2 and Kv7.3 / KCNQ3 subunits that show overlapping distribution throughout the brain and in the peripheral nervous system. They are also called ‘M-channels’ since their inhibition by muscarinic agonists leads to a profound increase in action potential firing. Consistent with their ability to suppress seizures and attenuate chronic inflammatory and neuropathic pain, mutations in the KCNQ2 and KCNQ3 genes are associated with benign familial neonatal convulsions, a dominantly-inherited epilepsy in infancy. Recently, de novo mutations in the KCNQ2 gene have been linked to early onset epileptic encephalopathy. Notably, some of these mutations are clustered in a region of the intracellular cytoplasmic tail of Kv7.2 that interacts with a ubiquitous calcium sensor, calmodulin. In this review, we highlight the recent advances in understanding the role of calmodulin in modulating physiological function of neuronal Kv7 channels including their biophysical properties, assembly, and trafficking. We also summarize recent studies that have investigated functional impact of epilepsy-associated mutations localized to the calmodulin binding domains of Kv7.2.
Key words: calmodulin; Kv7; KCNQ; epilepsy; action potential; M-channel
Hee Jung CHUNG . Role of calmodulin in neuronal Kv7/KCNQ potassium channels and epilepsy[J]. Frontiers in Biology, 2014 , 9(3) : 205 -215 . DOI: 10.1007/s11515-014-1305-3
1 |
AivarP, Fernández-OrthJ, Gomis-PerezC, AlberdiA, AlaimoA, RodríguezM S, GiraldezT, MirandaP, AresoP, VillarroelA (2012). Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker. PLoS One, 7(10): e47263
|
2 |
AlaimoA, AlberdiA, Gomis-PerezC, Fernandez-OrthJ, Gomez-PosadaJ C, AresoP, VillarroelA (2012). Cooperativity between calmodulin binding sites in Kv7.2 channels. J Cell Sci
|
3 |
AlaimoA, Gómez-PosadaJ C, AivarP, EtxeberríaA, Rodriguez-AlfaroJ A, AresoP, VillarroelA (2009). Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum. J Biol Chem, 284(31): 20668-20675
|
4 |
AlfonsoI, HahnJ S, PapazianO, MartinezY L, ReyesM A, AicardiJ (1997). Bilateral tonic-clonic epileptic seizures in non-benign familial neonatal convulsions. Pediatr Neurol, 16(3): 249-251
|
5 |
BalM, ZhangJ, HernandezCC, ZaikaO, ShapiroMS (2010) Ca2+/calmodulin disrupts AKAP79/150 interactions with KCNQ (M-Type) K+ channels. The Journal of neuroscience: the official journal of the Society for Neuroscience30: 2311-2323.
|
6 |
Blackburn-MunroG, JensenB S (2003). The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol, 460(2-3): 109-116
|
7 |
BorgattiR, ZuccaC, CavalliniA, FerrarioM, PanzeriC, CastaldoP, SoldovieriM V, BaschirottoC, BresolinN, Dalla BernardinaB, TaglialatelaM, BassiM T (2004). A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology, 63(1): 57-65
|
8 |
BrownD A, PassmoreG M (2009). Neural KCNQ (Kv7) channels. Br J Pharmacol, 156(8): 1185-1195
|
9 |
ChoveauF S, BierbowerS M, ShapiroM S (2012). Pore helix-S6 interactions are critical in governing current amplitudes of KCNQ3 K+ channels. Biophys J, 102(11): 2499-2509
|
10 |
ChungH J, JanY N, JanL Y (2006). Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc Natl Acad Sci U S A, 103(23): 8870-8875
|
11 |
ClarkB D, GoldbergE M, RudyB (2009). Electrogenic tuning of the axon initial segment. Neuroscientist, 15(6): 651-668
|
12 |
CooperE C, HarringtonE, JanY N, JanL Y (2001) M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J Neurosci, 21: 9529-9540
|
13 |
CoppolaG, CastaldoP, Miraglia del GiudiceE, BelliniG, GalassoF, SoldovieriM V, AnzaloneL, SferroC, AnnunziatoL, PascottoA, TaglialatelaM (2003). A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology, 61(1): 131-134
|
14 |
DahimèneS, AlcoléaS, NaudP, JourdonP, EscandeD, BrasseurR, ThomasA, BaróI, MérotJ (2006). The N-terminal juxtamembranous domain of KCNQ1 is critical for channel surface expression: implications in the Romano-Ward LQT1 syndrome. Circ Res, 99(10): 1076-1083
|
15 |
DaileyJ W, CheongJ H, KoK H, Adams-CurtisL E, JobeP C (1995). Anticonvulsant properties of D-20443 in genetically epilepsy-prone rats: prediction of clinical response. Neurosci Lett, 195(2): 77-80
|
16 |
DedekK, FuscoL, TeloyN, SteinleinO K (2003). Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res, 54(1): 21-27
|
17 |
DedekK, KunathB, KananuraC, ReunerU, JentschT J, SteinleinO K (2001). Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci U S A, 98(21): 12272-12277
|
18 |
DelmasP, BrownD A (2005). Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci, 6(11): 850-862
|
19 |
DenckerD, DiasR, PedersenM L, HusumH (2008). Effect of the new antiepileptic drug retigabine in a rodent model of mania. Epilepsy Behav, 12(1): 49-53
|
20 |
DevauxJ J, KleopaK A, CooperE C, SchererS S (2004). KCNQ2 is a nodal K+ channel. J Neurosci, 24: 1236-1244
|
21 |
EtxeberriaA, AivarP, Rodriguez-AlfaroJ A, AlaimoA, VillaceP, Gomez-PosadaJ C, AresoP, VillarroelA (2008). Calmodulin regulates the trafficking of KCNQ2 potassium channels. FASEB J, 22: 1135-1143
|
22 |
EtxeberriaA, Santana-CastroI, RegaladoMP, AivarP, VillarroelA (2004). Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation. J Neurosci, 24: 9146-9152
|
23 |
EtzioniA, SiloniS, ChikvashvilliD, StrulovichR, SachyaniD, RegevN, Greitzer-AntesD, HirschJ A, LotanI (2011). Regulation of neuronal M-channel gating in an isoform-specific manner: functional interplay between calmodulin and syntaxin 1A. J Neurosci, 31: 14158-14171
|
24 |
FordC P, StemkowskiPL, LightP E, SmithP A (2003). Experiments to test the role of phosphatidylinositol 4,5-bisphosphate in neurotransmitter-induced M-channel closure in bullfrog sympathetic neurons. J Neurosci, 234931-4941
|
25 |
GamperN, LiY, ShapiroM S (2005). Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell, 16(8): 3538-3551
|
26 |
GamperN, ShapiroM S (2003). Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J Gen Physiol, 122(1): 17-31
|
27 |
GamperN, ShapiroM S (2007). Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci, 8(12): 921-934
|
28 |
Gómez-PosadaJ C, AivarP, AlberdiA, AlaimoA, EtxeberríaA, Fernández-OrthJ, ZamalloaT, Roura-FerrerM, VillaceP, AresoP, CasisO, VillarroelA (2011). Kv7 channels can function without constitutive calmodulin tethering. PLoS One, 6(9): e25508
|
29 |
GuN, VervaekeK, HuH, StormJ F (2005). Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol, 566(Pt 3): 689-715
|
30 |
GunthorpeM J, LargeC H, SankarR (2012). The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia, 53(3): 412-424
|
31 |
HadleyJ K, PassmoreG M, TatulianL, Al-QatariM, YeF, WickendenA D, BrownD A (2003) Stoichiometry of expressed KCNQ2/KCNQ3 potassium channels and subunit composition of native ganglionic M channels deduced from block by tetraethylammonium. J Neurosci, 23: 5012-5019
|
32 |
HaitinY, AttaliB (2008). The C-terminus of Kv7 channels: a multifunctional module. J Physiol, 586(7): 1803-1810
|
33 |
HansenH H, AndreasenJ T, WeikopP, MirzaN, Scheel-KrügerJ, MikkelsenJ D (2007). The neuronal KCNQ channel opener retigabine inhibits locomotor activity and reduces forebrain excitatory responses to the psychostimulants cocaine, methylphenidate and phencyclidine. Eur J Pharmacol, 570(1-3): 77-88
|
34 |
HernandezC C, ZaikaO, ShapiroM S (2008). A carboxy-terminal inter-helix linker as the site of phosphatidylinositol 4,5-bisphosphate action on Kv7 (M-type) K+ channels. J Gen Physiol, 132(3): 361-381
|
35 |
HigashidaH, HoshiN, ZhangJ S, YokoyamaS, HashiiM, JinD, NodaM, RobbinsJ (2005). Protein kinase C bound with A-kinase anchoring protein is involved in muscarinic receptor-activated modulation of M-type KCNQ potassium channels. Neurosci Res, 51(3): 231-234
|
36 |
HoeflichK P, IkuraM (2002). Calmodulin in action: diversity in target recognition and activation mechanisms. Cell, 108(6): 739-742
|
37 |
HoshiN, LangebergL K, ScottJ D (2005). Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat Cell Biol, 7(11): 1066-1073
|
38 |
HoshiN, ZhangJ S, OmakiM, TakeuchiT, YokoyamaS, WanaverbecqN, LangebergL K, YonedaY, ScottJ D, BrownD A, HigashidaH (2003). AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci, 6(6): 564-571
|
39 |
HowardA L, NeuA, MorganR J, EchegoyenJ C, SolteszI (2007a). Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol, 97(3): 2394-2409
|
40 |
HowardR J, ClarkK A, HoltonJ M, MinorD L Jr (2007b). Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron, 53(5): 663-675
|
41 |
KorsgaardM P, HartzB P, BrownW D, AhringP K, StrøbaekD, MirzaN R (2005). Anxiolytic effects of Maxipost (BMS-204352) and retigabine via activation of neuronal Kv7 channels. J Pharmacol Exp Ther, 314(1): 282-292
|
42 |
KosenkoA, KangS, SmithI M, GreeneD L, LangebergL K, ScottJ D, HoshiN (2012). Coordinated signal integration at the M-type potassium channel upon muscarinic stimulation. EMBO J, 31(14): 3147-3156
|
43 |
KwanP, BrodieM J (2000). Epilepsy after the first drug fails: substitution or add-on? Seizure, 9(7): 464-468
|
44 |
LaiH C, JanL Y (2006). The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci, 7(7): 548-562
|
45 |
LargeC H, SokalD M, NehligA, GunthorpeM J, SankarR, CreanC S, VanlandinghamK E, WhiteH S (2012). The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: implications for clinical use. Epilepsia, 53(3): 425-436
|
46 |
LercheH, BiervertC, AlekovA K, SchleithoffL, LindnerM, KlingerW, BretschneiderF, MitrovicN, Jurkat-RottK, BodeH, Lehmann-HornF, SteinleinO K (1999). A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions. Ann Neurol, 46(3): 305-312
|
47 |
LiY, GamperN, HilgemannDW, ShapiroMS (2005). Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J Neurosci, 25: 9825-9835
|
48 |
LiuW, DevauxJ J (2014). Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons. Mol Cell Neurosci, 58: 40-52
|
49 |
MaljevicS, WuttkeT V, LercheH (2008). Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol, 586(7): 1791-1801
|
50 |
MartireM, CastaldoP, D'AmicoM, PreziosiP, AnnunziatoL, TaglialatelaM (2004). M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci, 24: 592-597
|
51 |
MoulardB, PicardF, le HellardS, AgulhonC, WeilandS, FavreI, BertrandS, MalafosseA, BertrandD (2001). Ion channel variation causes epilepsies. Brain Res Brain Res Rev, 36(2-3): 275-284
|
52 |
OhtaharaS, YamatogiY (2006). Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res, 70(Suppl 1): S58-S67
|
53 |
OrhanG, BockM, SchepersD, IlinaE I, ReichelS N, LofflerH, JezutkovicN, WeckhuysenS, MandelstamS, SulsA, DankerT, GuentherE, SchefferI E, JongheP D, LercheH, MaljevicS (2013). Dominant-negative Effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol, 75(3): 382-394
|
54 |
PanZ, KaoT, HorvathZ, LemosJ, SulJ Y, CranstounS D, BennettV, SchererS S, CooperE C (2006). A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci, 26: 2599-2613
|
55 |
PassmoreG M, SelyankoA A, MistryM, Al-QatariM, MarshS J, MatthewsE A, DickensonAH, BrownT A, BurbidgeS A, MainM, BrownD A (2003). KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci, 23: 7227-7236
|
56 |
PeretzA, SheininA, YueC, Degani-KatzavN, GiborG, NachmanR, GopinA, TamE, ShabatD, YaariY, AttaliB (2007). Pre- and postsynaptic activation of M-channels by a novel opener dampens neuronal firing and transmitter release. J Neurophysiol, 97(1): 283-295
|
57 |
PetersH C, HuH, PongsO, StormJ F, IsbrandtD (2005). Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci, 8(1): 51-60
|
58 |
PsenkaT M, HoldenK R (1996). Benign familial neonatal convulsions; psychosocial adjustment to the threat of recurrent seizures. Seizure, 5(3): 243-245
|
59 |
RasmussenH B, Frøkjaer-JensenC, JensenC S, JensenH S, JørgensenN K, MisonouH, TrimmerJ S, OlesenS P, SchmittN (2007). Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment. J Cell Sci, 120(Pt 6): 953-963
|
60 |
RegevN, Degani-KatzavN, KorngreenA, EtzioniA, SiloniS, AlaimoA, ChikvashviliD, VillarroelA, AttaliB, LotanI (2009). Selective interaction of syntaxin 1A with KCNQ2: possible implications for specific modulation of presynaptic activity. PLoS One, 4(8): e6586
|
61 |
RichardsM C, HeronS E, SpendloveH E, SchefferI E, GrintonB, BerkovicS F, MulleyJ C, DavyA (2004). Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction. J Med Genet, 41(3): e35
|
62 |
RobbinsJ (2001). KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther, 90(1): 1-19
|
63 |
RocheJ P, WestenbroekR, SoromA J, HilleB, MackieK, ShapiroM S (2002). Antibodies and a cysteine-modifying reagent show correspondence of M current in neurons to KCNQ2 and KCNQ3 K+ channels. Br J Pharmacol, 137(8): 1173-1186
|
64 |
RostockA, ToberC, RundfeldtC, BartschR, EngelJ, PolymeropoulosE E, KutscherB, LöscherW, HönackD, WhiteH S, WolfH H (1996). D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Res, 23(3): 211-223
|
65 |
SaitsuH, KatoM, KoideA, GotoT, FujitaT, NishiyamaK, TsurusakiY, DoiH, MiyakeN, HayasakaK, MatsumotoN (2012). Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Ann Neurol, 72(2): 298-300
|
66 |
SchmittB, WohlrabG, SanderT, SteinleinO K, HajnalB L (2005). Neonatal seizures with tonic clonic sequences and poor developmental outcome. Epilepsy Res, 65(3): 161-168
|
67 |
SchroederB C, KubischC, SteinV, JentschT J (1998). Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature, 396(6712): 687-690
|
68 |
SchwakeM, AthanasiaduD, BeimgrabenC, BlanzJ, BeckC, JentschTJ, SaftigP, FriedrichT (2006). Structural determinants of M-type KCNQ (Kv7) K+ channel assembly. J Neurosci, 26: 3757-3766
|
69 |
SchwakeM, JentschT J, FriedrichT (2003). A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly. EMBO Rep, 4(1): 76-81
|
70 |
SchwakeM, PuschM, KharkovetsT, JentschT J (2000). Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem, 275(18): 13343-13348
|
71 |
SchwarzJ R, GlassmeierG, CooperE C, KaoT C, NoderaH, TabuenaD, KajiR, BostockH (2006). KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol, 573(Pt 1): 17-34
|
72 |
SelyankoA A, BrownD A (1996). Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons. Neuron, 16(1): 151-162
|
73 |
ShahM M, MiglioreM, BrownD A (2011). Differential effects of Kv7 (M-) channels on synaptic integration in distinct subcellular compartments of rat hippocampal pyramidal neurons. J Physiol, 589(Pt 24): 6029-6038
|
74 |
ShahM M, MiglioreM, ValenciaI, CooperE C, BrownD A (2008). Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A, 105(22): 7869-7874
|
75 |
ShahM, MistryM, MarshS J, BrownD A, DelmasP (2002). Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol, 544(Pt 1): 29-37
|
76 |
ShahidullahM, SantarelliL C, WenH, LevitanI B (2005). Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability. Proc Natl Acad Sci U S A, 102(45): 16454-16459
|
77 |
SinghNA, WestenskowP, CharlierC, PappasC, LeslieJ, DillonJ, AndersonVE, SanguinettiMC, LeppertMF (2003) KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain, 126: 2726-2737
|
78 |
SoldovieriM V, Boutry-KryzaN, MilhM, DoummarD, HeronB, BourelE, AmbrosinoP, MiceliF, De MariaM, DorisonN, AuvinS, EchenneB, OertelJ, RiquetA, LambertL, GerardM, RoubergueA, CalenderA, MignotC, TaglialatelaM, LescaG (2014). Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A. Hum Mutat, 35(3): 356-367
|
79 |
SoldovieriM V, CastaldoP, IodiceL, MiceliF, BarreseV, BelliniG, Miraglia del GiudiceE, PascottoA, BonattiS, AnnunziatoL, TaglialatelaM (2006). Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J Biol Chem, 281(1): 418-428
|
80 |
SoldovieriM V, MiceliF, TaglialatelaM (2011). Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology (Bethesda), 26(5): 365-376
|
81 |
SongA H, WangD, ChenG, LiY, LuoJ, DuanS, PooM M (2009). A selective filter for cytoplasmic transport at the axon initial segment. Cell, 136(6): 1148-1160
|
82 |
SuhB C, HilleB (2002). Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron, 35(3): 507-520
|
83 |
SuhB C, HilleB (2007). Regulation of KCNQ channels by manipulation of phosphoinositides. J Physiol, 582(Pt 3): 911-916
|
84 |
SuhB C, HorowitzL F, HirdesW, MackieK, HilleB (2004). Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq. J Gen Physiol, 123(6): 663-683
|
85 |
SurtiT S, JanL Y (2005). A potassium channel, the M-channel, as a therapeutic target. Curr Opin Investig Drugs, 6(7): 704-711
|
86 |
ToberC, RostockA, RundfeldtC, BartschR (1996). D-23129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur J Pharmacol, 303(3): 163-169
|
87 |
TzingounisA V, HeidenreichM, KharkovetsT, SpitzmaulG, JensenH S, NicollR A, JentschT J (2010). The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proc Natl Acad Sci U S A, 107(22): 10232-10237
|
88 |
TzingounisA V, NicollR A (2008). Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents. Proc Natl Acad Sci U S A, 105(50): 19974-19979
|
89 |
WangH S, PanZ, ShiW, BrownB S, WymoreR S, CohenI S, DixonJ E, McKinnonD (1998). KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science, 282(5395): 1890-1893
|
90 |
WatanabeH, NagataE, KosakaiA, NakamuraM, YokoyamaM, TanakaK, SasaiH (2000). Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem, 75(1): 28-33
|
91 |
WeckhuysenS, MandelstamS, SulsA, AudenaertD, DeconinckT, ClaesL R, DeprezL, SmetsK, HristovaD, YordanovaI, JordanovaA, CeulemansB, JansenA, HasaertsD, RoelensF, LagaeL, YendleS, StanleyT, HeronS E, MulleyJ C, BerkovicS F, SchefferI E, de JongheP (2012). KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol, 71(1): 15-25
|
92 |
WenH, LevitanIB (2002) Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci, 22: 7991-8001
|
93 |
WinksJS, HughesS, FilippovA K, TatulianL, AbogadieF C, BrownD A, MarshS J (2005). Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci, 25: 3400-3413
|
94 |
WongW, ScottJ D (2004). AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol, 5(12): 959-970
|
95 |
WuttkeT V, Jurkat-RottK, PaulusW, GarncarekM, Lehmann-HornF, LercheH (2007). Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology, 69(22): 2045-2053
|
96 |
XuQ, ChangA, ToliaA, MinorD L Jr (2013). Structure of a Ca(2+)/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation. J Mol Biol, 425(2): 378-394
|
97 |
YueC, YaariY (2004) KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci, 24: 4614-4624
|
98 |
YueC, YaariY (2006) Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells. J Neurophysiol, 95(6): 3480-3495
|
99 |
Yus-NajeraE, Santana-CastroI, VillarroelA (2002). The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem, 277(32): 28545-28553
|
100 |
ZaikaO, TolstykhG P, JaffeD B, ShapiroM S (2007) Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci, 27: 8914-8926
|
101 |
ZhangH, CraciunL C, MirshahiT, RohácsT, LopesC M, JinT, LogothetisD E (2003). PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron, 37(6): 963-975
|
/
〈 | 〉 |