Role of calmodulin in neuronal Kv7/KCNQ potassium channels and epilepsy
Hee Jung CHUNG
Role of calmodulin in neuronal Kv7/KCNQ potassium channels and epilepsy
Neuronal Kv7/KCNQ channels are critical regulators of neuronal excitability since they potently suppress repetitive firing of action potentials. These voltage-dependent potassium channels are composed mostly of Kv7.2 / KCNQ2 and Kv7.3 / KCNQ3 subunits that show overlapping distribution throughout the brain and in the peripheral nervous system. They are also called ‘M-channels’ since their inhibition by muscarinic agonists leads to a profound increase in action potential firing. Consistent with their ability to suppress seizures and attenuate chronic inflammatory and neuropathic pain, mutations in the KCNQ2 and KCNQ3 genes are associated with benign familial neonatal convulsions, a dominantly-inherited epilepsy in infancy. Recently, de novo mutations in the KCNQ2 gene have been linked to early onset epileptic encephalopathy. Notably, some of these mutations are clustered in a region of the intracellular cytoplasmic tail of Kv7.2 that interacts with a ubiquitous calcium sensor, calmodulin. In this review, we highlight the recent advances in understanding the role of calmodulin in modulating physiological function of neuronal Kv7 channels including their biophysical properties, assembly, and trafficking. We also summarize recent studies that have investigated functional impact of epilepsy-associated mutations localized to the calmodulin binding domains of Kv7.2.
calmodulin / Kv7 / KCNQ / epilepsy / action potential / M-channel
[1] |
AivarP, Fernández-OrthJ, Gomis-PerezC, AlberdiA, AlaimoA, RodríguezM S, GiraldezT, MirandaP, AresoP, VillarroelA (2012). Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker. PLoS One, 7(10): e47263
CrossRef
Pubmed
Google scholar
|
[2] |
AlaimoA, AlberdiA, Gomis-PerezC, Fernandez-OrthJ, Gomez-PosadaJ C, AresoP, VillarroelA (2012). Cooperativity between calmodulin binding sites in Kv7.2 channels. J Cell Sci
Pubmed
|
[3] |
AlaimoA, Gómez-PosadaJ C, AivarP, EtxeberríaA, Rodriguez-AlfaroJ A, AresoP, VillarroelA (2009). Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum. J Biol Chem, 284(31): 20668-20675
CrossRef
Pubmed
Google scholar
|
[4] |
AlfonsoI, HahnJ S, PapazianO, MartinezY L, ReyesM A, AicardiJ (1997). Bilateral tonic-clonic epileptic seizures in non-benign familial neonatal convulsions. Pediatr Neurol, 16(3): 249-251
CrossRef
Pubmed
Google scholar
|
[5] |
BalM, ZhangJ, HernandezCC, ZaikaO, ShapiroMS (2010) Ca2+/calmodulin disrupts AKAP79/150 interactions with KCNQ (M-Type) K+ channels. The Journal of neuroscience: the official journal of the Society for Neuroscience30: 2311-2323.
|
[6] |
Blackburn-MunroG, JensenB S (2003). The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol, 460(2-3): 109-116
CrossRef
Pubmed
Google scholar
|
[7] |
BorgattiR, ZuccaC, CavalliniA, FerrarioM, PanzeriC, CastaldoP, SoldovieriM V, BaschirottoC, BresolinN, Dalla BernardinaB, TaglialatelaM, BassiM T (2004). A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology, 63(1): 57-65
CrossRef
Pubmed
Google scholar
|
[8] |
BrownD A, PassmoreG M (2009). Neural KCNQ (Kv7) channels. Br J Pharmacol, 156(8): 1185-1195
CrossRef
Pubmed
Google scholar
|
[9] |
ChoveauF S, BierbowerS M, ShapiroM S (2012). Pore helix-S6 interactions are critical in governing current amplitudes of KCNQ3 K+ channels. Biophys J, 102(11): 2499-2509
CrossRef
Pubmed
Google scholar
|
[10] |
ChungH J, JanY N, JanL Y (2006). Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc Natl Acad Sci U S A, 103(23): 8870-8875
CrossRef
Pubmed
Google scholar
|
[11] |
ClarkB D, GoldbergE M, RudyB (2009). Electrogenic tuning of the axon initial segment. Neuroscientist, 15(6): 651-668
CrossRef
Pubmed
Google scholar
|
[12] |
CooperE C, HarringtonE, JanY N, JanL Y (2001) M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J Neurosci, 21: 9529-9540
|
[13] |
CoppolaG, CastaldoP, Miraglia del GiudiceE, BelliniG, GalassoF, SoldovieriM V, AnzaloneL, SferroC, AnnunziatoL, PascottoA, TaglialatelaM (2003). A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology, 61(1): 131-134
CrossRef
Pubmed
Google scholar
|
[14] |
DahimèneS, AlcoléaS, NaudP, JourdonP, EscandeD, BrasseurR, ThomasA, BaróI, MérotJ (2006). The N-terminal juxtamembranous domain of KCNQ1 is critical for channel surface expression: implications in the Romano-Ward LQT1 syndrome. Circ Res, 99(10): 1076-1083
CrossRef
Pubmed
Google scholar
|
[15] |
DaileyJ W, CheongJ H, KoK H, Adams-CurtisL E, JobeP C (1995). Anticonvulsant properties of D-20443 in genetically epilepsy-prone rats: prediction of clinical response. Neurosci Lett, 195(2): 77-80
CrossRef
Pubmed
Google scholar
|
[16] |
DedekK, FuscoL, TeloyN, SteinleinO K (2003). Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res, 54(1): 21-27
CrossRef
Pubmed
Google scholar
|
[17] |
DedekK, KunathB, KananuraC, ReunerU, JentschT J, SteinleinO K (2001). Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci U S A, 98(21): 12272-12277
CrossRef
Pubmed
Google scholar
|
[18] |
DelmasP, BrownD A (2005). Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci, 6(11): 850-862
CrossRef
Pubmed
Google scholar
|
[19] |
DenckerD, DiasR, PedersenM L, HusumH (2008). Effect of the new antiepileptic drug retigabine in a rodent model of mania. Epilepsy Behav, 12(1): 49-53
CrossRef
Pubmed
Google scholar
|
[20] |
DevauxJ J, KleopaK A, CooperE C, SchererS S (2004). KCNQ2 is a nodal K+ channel. J Neurosci, 24: 1236-1244
|
[21] |
EtxeberriaA, AivarP, Rodriguez-AlfaroJ A, AlaimoA, VillaceP, Gomez-PosadaJ C, AresoP, VillarroelA (2008). Calmodulin regulates the trafficking of KCNQ2 potassium channels. FASEB J, 22: 1135-1143
|
[22] |
EtxeberriaA, Santana-CastroI, RegaladoMP, AivarP, VillarroelA (2004). Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation. J Neurosci, 24: 9146-9152
|
[23] |
EtzioniA, SiloniS, ChikvashvilliD, StrulovichR, SachyaniD, RegevN, Greitzer-AntesD, HirschJ A, LotanI (2011). Regulation of neuronal M-channel gating in an isoform-specific manner: functional interplay between calmodulin and syntaxin 1A. J Neurosci, 31: 14158-14171
|
[24] |
FordC P, StemkowskiPL, LightP E, SmithP A (2003). Experiments to test the role of phosphatidylinositol 4,5-bisphosphate in neurotransmitter-induced M-channel closure in bullfrog sympathetic neurons. J Neurosci, 234931-4941
|
[25] |
GamperN, LiY, ShapiroM S (2005). Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell, 16(8): 3538-3551
CrossRef
Pubmed
Google scholar
|
[26] |
GamperN, ShapiroM S (2003). Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J Gen Physiol, 122(1): 17-31
CrossRef
Pubmed
Google scholar
|
[27] |
GamperN, ShapiroM S (2007). Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci, 8(12): 921-934
CrossRef
Pubmed
Google scholar
|
[28] |
Gómez-PosadaJ C, AivarP, AlberdiA, AlaimoA, EtxeberríaA, Fernández-OrthJ, ZamalloaT, Roura-FerrerM, VillaceP, AresoP, CasisO, VillarroelA (2011). Kv7 channels can function without constitutive calmodulin tethering. PLoS One, 6(9): e25508
CrossRef
Pubmed
Google scholar
|
[29] |
GuN, VervaekeK, HuH, StormJ F (2005). Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol, 566(Pt 3): 689-715
CrossRef
Pubmed
Google scholar
|
[30] |
GunthorpeM J, LargeC H, SankarR (2012). The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia, 53(3): 412-424
CrossRef
Pubmed
Google scholar
|
[31] |
HadleyJ K, PassmoreG M, TatulianL, Al-QatariM, YeF, WickendenA D, BrownD A (2003) Stoichiometry of expressed KCNQ2/KCNQ3 potassium channels and subunit composition of native ganglionic M channels deduced from block by tetraethylammonium. J Neurosci, 23: 5012-5019
|
[32] |
HaitinY, AttaliB (2008). The C-terminus of Kv7 channels: a multifunctional module. J Physiol, 586(7): 1803-1810
CrossRef
Pubmed
Google scholar
|
[33] |
HansenH H, AndreasenJ T, WeikopP, MirzaN, Scheel-KrügerJ, MikkelsenJ D (2007). The neuronal KCNQ channel opener retigabine inhibits locomotor activity and reduces forebrain excitatory responses to the psychostimulants cocaine, methylphenidate and phencyclidine. Eur J Pharmacol, 570(1-3): 77-88
CrossRef
Pubmed
Google scholar
|
[34] |
HernandezC C, ZaikaO, ShapiroM S (2008). A carboxy-terminal inter-helix linker as the site of phosphatidylinositol 4,5-bisphosphate action on Kv7 (M-type) K+ channels. J Gen Physiol, 132(3): 361-381
CrossRef
Pubmed
Google scholar
|
[35] |
HigashidaH, HoshiN, ZhangJ S, YokoyamaS, HashiiM, JinD, NodaM, RobbinsJ (2005). Protein kinase C bound with A-kinase anchoring protein is involved in muscarinic receptor-activated modulation of M-type KCNQ potassium channels. Neurosci Res, 51(3): 231-234
CrossRef
Pubmed
Google scholar
|
[36] |
HoeflichK P, IkuraM (2002). Calmodulin in action: diversity in target recognition and activation mechanisms. Cell, 108(6): 739-742
CrossRef
Pubmed
Google scholar
|
[37] |
HoshiN, LangebergL K, ScottJ D (2005). Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat Cell Biol, 7(11): 1066-1073
CrossRef
Pubmed
Google scholar
|
[38] |
HoshiN, ZhangJ S, OmakiM, TakeuchiT, YokoyamaS, WanaverbecqN, LangebergL K, YonedaY, ScottJ D, BrownD A, HigashidaH (2003). AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci, 6(6): 564-571
CrossRef
Pubmed
Google scholar
|
[39] |
HowardA L, NeuA, MorganR J, EchegoyenJ C, SolteszI (2007a). Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol, 97(3): 2394-2409
CrossRef
Pubmed
Google scholar
|
[40] |
HowardR J, ClarkK A, HoltonJ M, MinorD L Jr (2007b). Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron, 53(5): 663-675
CrossRef
Pubmed
Google scholar
|
[41] |
KorsgaardM P, HartzB P, BrownW D, AhringP K, StrøbaekD, MirzaN R (2005). Anxiolytic effects of Maxipost (BMS-204352) and retigabine via activation of neuronal Kv7 channels. J Pharmacol Exp Ther, 314(1): 282-292
CrossRef
Pubmed
Google scholar
|
[42] |
KosenkoA, KangS, SmithI M, GreeneD L, LangebergL K, ScottJ D, HoshiN (2012). Coordinated signal integration at the M-type potassium channel upon muscarinic stimulation. EMBO J, 31(14): 3147-3156
CrossRef
Pubmed
Google scholar
|
[43] |
KwanP, BrodieM J (2000). Epilepsy after the first drug fails: substitution or add-on? Seizure, 9(7): 464-468
CrossRef
Pubmed
Google scholar
|
[44] |
LaiH C, JanL Y (2006). The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci, 7(7): 548-562
CrossRef
Pubmed
Google scholar
|
[45] |
LargeC H, SokalD M, NehligA, GunthorpeM J, SankarR, CreanC S, VanlandinghamK E, WhiteH S (2012). The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: implications for clinical use. Epilepsia, 53(3): 425-436
CrossRef
Pubmed
Google scholar
|
[46] |
LercheH, BiervertC, AlekovA K, SchleithoffL, LindnerM, KlingerW, BretschneiderF, MitrovicN, Jurkat-RottK, BodeH, Lehmann-HornF, SteinleinO K (1999). A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions. Ann Neurol, 46(3): 305-312
CrossRef
Pubmed
Google scholar
|
[47] |
LiY, GamperN, HilgemannDW, ShapiroMS (2005). Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J Neurosci, 25: 9825-9835
|
[48] |
LiuW, DevauxJ J (2014). Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons. Mol Cell Neurosci, 58: 40-52
Pubmed
|
[49] |
MaljevicS, WuttkeT V, LercheH (2008). Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol, 586(7): 1791-1801
CrossRef
Pubmed
Google scholar
|
[50] |
MartireM, CastaldoP, D'AmicoM, PreziosiP, AnnunziatoL, TaglialatelaM (2004). M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci, 24: 592-597
|
[51] |
MoulardB, PicardF, le HellardS, AgulhonC, WeilandS, FavreI, BertrandS, MalafosseA, BertrandD (2001). Ion channel variation causes epilepsies. Brain Res Brain Res Rev, 36(2-3): 275-284
CrossRef
Pubmed
Google scholar
|
[52] |
OhtaharaS, YamatogiY (2006). Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res, 70(Suppl 1): S58-S67
CrossRef
Pubmed
Google scholar
|
[53] |
OrhanG, BockM, SchepersD, IlinaE I, ReichelS N, LofflerH, JezutkovicN, WeckhuysenS, MandelstamS, SulsA, DankerT, GuentherE, SchefferI E, JongheP D, LercheH, MaljevicS (2013). Dominant-negative Effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol, 75(3): 382-394
|
[54] |
PanZ, KaoT, HorvathZ, LemosJ, SulJ Y, CranstounS D, BennettV, SchererS S, CooperE C (2006). A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci, 26: 2599-2613
|
[55] |
PassmoreG M, SelyankoA A, MistryM, Al-QatariM, MarshS J, MatthewsE A, DickensonAH, BrownT A, BurbidgeS A, MainM, BrownD A (2003). KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci, 23: 7227-7236
|
[56] |
PeretzA, SheininA, YueC, Degani-KatzavN, GiborG, NachmanR, GopinA, TamE, ShabatD, YaariY, AttaliB (2007). Pre- and postsynaptic activation of M-channels by a novel opener dampens neuronal firing and transmitter release. J Neurophysiol, 97(1): 283-295
CrossRef
Pubmed
Google scholar
|
[57] |
PetersH C, HuH, PongsO, StormJ F, IsbrandtD (2005). Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci, 8(1): 51-60
CrossRef
Pubmed
Google scholar
|
[58] |
PsenkaT M, HoldenK R (1996). Benign familial neonatal convulsions; psychosocial adjustment to the threat of recurrent seizures. Seizure, 5(3): 243-245
CrossRef
Pubmed
Google scholar
|
[59] |
RasmussenH B, Frøkjaer-JensenC, JensenC S, JensenH S, JørgensenN K, MisonouH, TrimmerJ S, OlesenS P, SchmittN (2007). Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment. J Cell Sci, 120(Pt 6): 953-963
CrossRef
Pubmed
Google scholar
|
[60] |
RegevN, Degani-KatzavN, KorngreenA, EtzioniA, SiloniS, AlaimoA, ChikvashviliD, VillarroelA, AttaliB, LotanI (2009). Selective interaction of syntaxin 1A with KCNQ2: possible implications for specific modulation of presynaptic activity. PLoS One, 4(8): e6586
CrossRef
Pubmed
Google scholar
|
[61] |
RichardsM C, HeronS E, SpendloveH E, SchefferI E, GrintonB, BerkovicS F, MulleyJ C, DavyA (2004). Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction. J Med Genet, 41(3): e35
CrossRef
Pubmed
Google scholar
|
[62] |
RobbinsJ (2001). KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther, 90(1): 1-19
CrossRef
Pubmed
Google scholar
|
[63] |
RocheJ P, WestenbroekR, SoromA J, HilleB, MackieK, ShapiroM S (2002). Antibodies and a cysteine-modifying reagent show correspondence of M current in neurons to KCNQ2 and KCNQ3 K+ channels. Br J Pharmacol, 137(8): 1173-1186
CrossRef
Pubmed
Google scholar
|
[64] |
RostockA, ToberC, RundfeldtC, BartschR, EngelJ, PolymeropoulosE E, KutscherB, LöscherW, HönackD, WhiteH S, WolfH H (1996). D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Res, 23(3): 211-223
CrossRef
Pubmed
Google scholar
|
[65] |
SaitsuH, KatoM, KoideA, GotoT, FujitaT, NishiyamaK, TsurusakiY, DoiH, MiyakeN, HayasakaK, MatsumotoN (2012). Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Ann Neurol, 72(2): 298-300
CrossRef
Pubmed
Google scholar
|
[66] |
SchmittB, WohlrabG, SanderT, SteinleinO K, HajnalB L (2005). Neonatal seizures with tonic clonic sequences and poor developmental outcome. Epilepsy Res, 65(3): 161-168
CrossRef
Pubmed
Google scholar
|
[67] |
SchroederB C, KubischC, SteinV, JentschT J (1998). Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature, 396(6712): 687-690
CrossRef
Pubmed
Google scholar
|
[68] |
SchwakeM, AthanasiaduD, BeimgrabenC, BlanzJ, BeckC, JentschTJ, SaftigP, FriedrichT (2006). Structural determinants of M-type KCNQ (Kv7) K+ channel assembly. J Neurosci, 26: 3757-3766
|
[69] |
SchwakeM, JentschT J, FriedrichT (2003). A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly. EMBO Rep, 4(1): 76-81
CrossRef
Pubmed
Google scholar
|
[70] |
SchwakeM, PuschM, KharkovetsT, JentschT J (2000). Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem, 275(18): 13343-13348
CrossRef
Pubmed
Google scholar
|
[71] |
SchwarzJ R, GlassmeierG, CooperE C, KaoT C, NoderaH, TabuenaD, KajiR, BostockH (2006). KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol, 573(Pt 1): 17-34
CrossRef
Pubmed
Google scholar
|
[72] |
SelyankoA A, BrownD A (1996). Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons. Neuron, 16(1): 151-162
CrossRef
Pubmed
Google scholar
|
[73] |
ShahM M, MiglioreM, BrownD A (2011). Differential effects of Kv7 (M-) channels on synaptic integration in distinct subcellular compartments of rat hippocampal pyramidal neurons. J Physiol, 589(Pt 24): 6029-6038
Pubmed
|
[74] |
ShahM M, MiglioreM, ValenciaI, CooperE C, BrownD A (2008). Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A, 105(22): 7869-7874
CrossRef
Pubmed
Google scholar
|
[75] |
ShahM, MistryM, MarshS J, BrownD A, DelmasP (2002). Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol, 544(Pt 1): 29-37
CrossRef
Pubmed
Google scholar
|
[76] |
ShahidullahM, SantarelliL C, WenH, LevitanI B (2005). Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability. Proc Natl Acad Sci U S A, 102(45): 16454-16459
CrossRef
Pubmed
Google scholar
|
[77] |
SinghNA, WestenskowP, CharlierC, PappasC, LeslieJ, DillonJ, AndersonVE, SanguinettiMC, LeppertMF (2003) KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain, 126: 2726-2737
|
[78] |
SoldovieriM V, Boutry-KryzaN, MilhM, DoummarD, HeronB, BourelE, AmbrosinoP, MiceliF, De MariaM, DorisonN, AuvinS, EchenneB, OertelJ, RiquetA, LambertL, GerardM, RoubergueA, CalenderA, MignotC, TaglialatelaM, LescaG (2014). Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A. Hum Mutat, 35(3): 356-367
CrossRef
Pubmed
Google scholar
|
[79] |
SoldovieriM V, CastaldoP, IodiceL, MiceliF, BarreseV, BelliniG, Miraglia del GiudiceE, PascottoA, BonattiS, AnnunziatoL, TaglialatelaM (2006). Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J Biol Chem, 281(1): 418-428
CrossRef
Pubmed
Google scholar
|
[80] |
SoldovieriM V, MiceliF, TaglialatelaM (2011). Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology (Bethesda), 26(5): 365-376
CrossRef
Pubmed
Google scholar
|
[81] |
SongA H, WangD, ChenG, LiY, LuoJ, DuanS, PooM M (2009). A selective filter for cytoplasmic transport at the axon initial segment. Cell, 136(6): 1148-1160
CrossRef
Pubmed
Google scholar
|
[82] |
SuhB C, HilleB (2002). Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron, 35(3): 507-520
CrossRef
Pubmed
Google scholar
|
[83] |
SuhB C, HilleB (2007). Regulation of KCNQ channels by manipulation of phosphoinositides. J Physiol, 582(Pt 3): 911-916
CrossRef
Pubmed
Google scholar
|
[84] |
SuhB C, HorowitzL F, HirdesW, MackieK, HilleB (2004). Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq. J Gen Physiol, 123(6): 663-683
CrossRef
Pubmed
Google scholar
|
[85] |
SurtiT S, JanL Y (2005). A potassium channel, the M-channel, as a therapeutic target. Curr Opin Investig Drugs, 6(7): 704-711
Pubmed
|
[86] |
ToberC, RostockA, RundfeldtC, BartschR (1996). D-23129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur J Pharmacol, 303(3): 163-169
CrossRef
Pubmed
Google scholar
|
[87] |
TzingounisA V, HeidenreichM, KharkovetsT, SpitzmaulG, JensenH S, NicollR A, JentschT J (2010). The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proc Natl Acad Sci U S A, 107(22): 10232-10237
CrossRef
Pubmed
Google scholar
|
[88] |
TzingounisA V, NicollR A (2008). Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents. Proc Natl Acad Sci U S A, 105(50): 19974-19979
CrossRef
Pubmed
Google scholar
|
[89] |
WangH S, PanZ, ShiW, BrownB S, WymoreR S, CohenI S, DixonJ E, McKinnonD (1998). KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science, 282(5395): 1890-1893
CrossRef
Pubmed
Google scholar
|
[90] |
WatanabeH, NagataE, KosakaiA, NakamuraM, YokoyamaM, TanakaK, SasaiH (2000). Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem, 75(1): 28-33
CrossRef
Pubmed
Google scholar
|
[91] |
WeckhuysenS, MandelstamS, SulsA, AudenaertD, DeconinckT, ClaesL R, DeprezL, SmetsK, HristovaD, YordanovaI, JordanovaA, CeulemansB, JansenA, HasaertsD, RoelensF, LagaeL, YendleS, StanleyT, HeronS E, MulleyJ C, BerkovicS F, SchefferI E, de JongheP (2012). KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol, 71(1): 15-25
CrossRef
Pubmed
Google scholar
|
[92] |
WenH, LevitanIB (2002) Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci, 22: 7991-8001
|
[93] |
WinksJS, HughesS, FilippovA K, TatulianL, AbogadieF C, BrownD A, MarshS J (2005). Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci, 25: 3400-3413
|
[94] |
WongW, ScottJ D (2004). AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol, 5(12): 959-970
CrossRef
Pubmed
Google scholar
|
[95] |
WuttkeT V, Jurkat-RottK, PaulusW, GarncarekM, Lehmann-HornF, LercheH (2007). Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology, 69(22): 2045-2053
CrossRef
Pubmed
Google scholar
|
[96] |
XuQ, ChangA, ToliaA, MinorD L Jr (2013). Structure of a Ca(2+)/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation. J Mol Biol, 425(2): 378-394
CrossRef
Pubmed
Google scholar
|
[97] |
YueC, YaariY (2004) KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci, 24: 4614-4624
|
[98] |
YueC, YaariY (2006) Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells. J Neurophysiol, 95(6): 3480-3495
|
[99] |
Yus-NajeraE, Santana-CastroI, VillarroelA (2002). The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem, 277(32): 28545-28553
CrossRef
Pubmed
Google scholar
|
[100] |
ZaikaO, TolstykhG P, JaffeD B, ShapiroM S (2007) Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci, 27: 8914-8926
|
[101] |
ZhangH, CraciunL C, MirshahiT, RohácsT, LopesC M, JinT, LogothetisD E (2003). PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron, 37(6): 963-975
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |