REVIEW

The dynamics of murine mammary stem/progenitor cells

  • Qiaoxiang DONG , 1,2 ,
  • Lu-Zhe SUN , 1,3
Expand
  • 1. Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA
  • 2. Institute of Environmental Safety and Human Health, Wenzhou Medical University, University Town, Wenzhou 325035, China
  • 3. Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, TX 78299, USA

Received date: 31 Mar 2014

Accepted date: 15 Apr 2014

Published date: 24 Jun 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups.

Cite this article

Qiaoxiang DONG , Lu-Zhe SUN . The dynamics of murine mammary stem/progenitor cells[J]. Frontiers in Biology, 2014 , 9(3) : 175 -185 . DOI: 10.1007/s11515-014-1308-0

Acknowledgements

This work was supported in part by funding from National Institutes of Health Grant R01 ES022057, the Mary Kay Foundation (No. 082-12), and the National Natural Science Foundation of China (Grant No. 81373031).
1
AlviA J, ClaytonH, JoshiC, EnverT, AshworthA, VivancoM, DaleT C, SmalleyM J (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Res, 5(1): R1–R8

DOI PMID

2
Asselin-LabatM L, ShackletonM, StinglJ, VaillantF, ForrestN C, EavesC J, VisvaderJ E, LindemanG J (2006). Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst, 98: 1011–1014

3
Asselin-LabatM L, VaillantF, SheridanJ M, PalB, WuD, SimpsonE R, YasudaH, SmythG K, MartinT J, LindemanG J, VisvaderJ E (2010). Control of mammary stem cell function by steroid hormone signalling. Nature, 465(7299): 798–802

DOI PMID

4
BaiL, RohrschneiderL R (2010). s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue. Genes Dev, 24(17): 1882–1892

DOI PMID

5
BarkerN, HuchM, KujalaP, van de WeteringM, SnippertH J, van EsJ H, SatoT, StangeD E, BegthelH, van den BornM, DanenbergE, van den BrinkS, KorvingJ, AboA, PetersP J, WrightN, PoulsomR, CleversH (2010). Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 6(1): 25–36

DOI PMID

6
BarkerN, van EsJ H, JaksV, KasperM, SnippertH, ToftgårdR, CleversH (2008). Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb Symp Quant Biol, 73(0): 351–356

DOI PMID

7
BarkerN, van EsJ H, KuipersJ, KujalaP, van den BornM, CozijnsenM, HaegebarthA, KorvingJ, BegthelH, PetersP J, CleversH (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165): 1003–1007

DOI PMID

8
BernardoG M, LozadaK L, MiedlerJ D, HarburgG, HewittS C, MosleyJ D, GodwinA K, KorachK S, VisvaderJ E, KaestnerK H, Abdul-KarimF W, MontanoM M, KeriR A (2010). FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis. Development, 137(12): 2045–2054

DOI PMID

9
BoothB W, MackD L, Androutsellis-TheotokisA, McKayR D, BoulangerC A, SmithG H (2008). The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci USA, 105(39): 14891–14896

DOI PMID

10
BoulangerC A, MackD L, BoothB W, SmithG H (2007). Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc Natl Acad Sci USA, 104(10): 3871–3876

DOI PMID

11
BoulangerC A, WagnerK U, SmithG H (2005). Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene, 24(4): 552–560

DOI PMID

12
BrunoR D, SmithG H (2011). Functional characterization of stem cell activity in the mouse mammary gland. Stem Cell Rev, 7(2): 238–247

DOI PMID

13
de VisserK E, CiampricottiM, MichalakE M, TanD W, SpeksnijderE N, HauC S, CleversH, BarkerN, JonkersJ (2012). Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland. J Pathol, 228(3): 300–309

DOI PMID

14
DeomeK B, FaulkinL J Jr, BernH A, BlairP B (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res, 19(5): 515–520

PMID

15
DongQ, WangD, BandyopadhyayA, GaoH, GorenaK M, HildrethK, RebelV I, WalterC A, HuangC, SunL Z (2013). Mammospheres from murine mammary stem cell-enriched basal cells: clonal characteristics and repopulating potential. Stem Cell Res (Amst), 10(3): 396–404

DOI PMID

16
dos SantosC O, RebbeckC, RozhkovaE, ValentineA, SamuelsA, KadiriL R, OstenP, HarrisE Y, UrenP J, SmithA D, HannonG J (2013). Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells. Proc Natl Acad Sci USA, 110(18): 7123–7130

DOI PMID

17
FridriksdottirA J, PetersenO W, Rønnov-JessenL (2011). Mammary gland stem cells: current status and future challenges. Int J Dev Biol, 55(7–9): 719–729

DOI PMID

18
FuN, LindemanG J, VisvaderJ E (2014). The mammary stem cell hierarchy. Curr Top Dev Biol, 107: 133–160

DOI PMID

19
JeselsohnR, BrownN E, ArendtL, KlebbaI, HuM G, KuperwasserC, HindsP W (2010). Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell, 17(1): 65–76

DOI PMID

20
JhoE H, ZhangT, DomonC, JooC K, FreundJ N, CostantiniF (2002). Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol, 22(4): 1172–1183

DOI PMID

21
JoshiP A, JacksonH W, BeristainA G, Di GrappaM A, MoteP A, ClarkeC L, StinglJ, WaterhouseP D, KhokhaR (2010). Progesterone induces adult mammary stem cell expansion. Nature, 465(7299): 803–807

DOI PMID

22
KaantaA S, VirtanenC, SelforsL M, BruggeJ S, NeelB G (2013). Evidence for a multipotent mammary progenitor with pregnancy-specific activity. Breast Cancer Res, 15(4): R65

DOI PMID

23
KenneyN J, SmithG H, LawrenceE, BarrettJ C, SalomonD S (2001). Identification of stem cell units in the terminal end bud and duct of the mouse mammary gland. J Biomed Biotechnol, 1(3): 133–143

DOI PMID

24
KretzschmarK, WattF M (2012). Lineage tracing. Cell, 148(1–2): 33–45

DOI PMID

25
LimE, VaillantF, WuD, ForrestN C, PalB, HartA H, Asselin-LabatM L, GyorkiD E, WardT, PartanenA, FeleppaF, HuschtschaL I, ThorneH J, FoxS B, YanM, FrenchJ D, BrownM A, SmythG K, VisvaderJ E, LindemanG J, and the kConFab (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med, 15(8): 907–913

DOI PMID

26
LustigB, JerchowB, SachsM, WeilerS, PietschT, KarstenU, van de WeteringM, CleversH, SchlagP M, BirchmeierW, BehrensJ (2002). Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol, 22(4): 1184–1193

DOI PMID

27
ManingatP D, SenP, RijnkelsM, SunehagA L, HadsellD L, BrayM, HaymondM W (2009). Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics, 37(1): 12–22

DOI PMID

28
MatulkaL A, TriplettA A, WagnerK U (2007). Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol, 303(1): 29–44

DOI PMID

29
MolyneuxG, GeyerF C, MagnayF A, McCarthyA, KendrickH, NatrajanR, MackayA, GrigoriadisA, TuttA, AshworthA, Reis-FilhoJ S, SmalleyM J (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7(3): 403–417

DOI PMID

30
OakesS R, NaylorM J, Asselin-LabatM L, BlazekK D, Gardiner-GardenM, HiltonH N, KazlauskasM, PritchardM A, ChodoshL A, PfefferP L, LindemanG J, VisvaderJ E, OrmandyC J (2008). The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev, 22(5): 581–586

DOI PMID

31
PlaksV, BrenotA, LawsonD A, LinnemannJ R, Van KappelE C, WongK C, de SauvageF, KleinO D, WerbZ (2013). Lgr5-expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. Cell Reports, 3(1): 70–78

DOI PMID

32
RiosA C, FuN Y, LindemanG J, VisvaderJ E (2014). In situ identification of bipotent stem cells in the mammary gland. Nature, 506(7488): 322–327

DOI PMID

33
RohrschneiderL R, CustodioJ M, AndersonT A, MillerC P, GuH (2005). The intron 5/6 promoter region of the ship1 gene regulates expression in stem/progenitor cells of the mouse embryo. Dev Biol, 283(2): 503–521

DOI PMID

34
ShackletonM, VaillantF, SimpsonK J, StinglJ, SmythG K, Asselin-LabatM L, WuL, LindemanG J, VisvaderJ E (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439(7072): 84–88

DOI PMID

35
ShehataM, TeschendorffA, SharpG, NovcicN, RussellA, AvrilS, PraterM, EirewP, CaldasC, WatsonC J, StinglJ (2012). Phenotypic and functional characterization of the luminal cell hierarchy of the mammary gland. Breast Cancer Res, 14(5): R134

DOI PMID

36
SleemanK E, KendrickH, AshworthA, IsackeC M, SmalleyM J (2006). CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res, 8(1): R7

DOI PMID

37
SmithG H, ChepkoG (2001). Mammary epithelial stem cells. Microsc Res Tech, 52(2): 190–203

DOI PMID

38
SmithG H, MedinaD (2008). Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res, 10(1): 203

DOI PMID

39
SmithG H, StricklandP, DanielC W (2002). Putative epithelial stem cell loss corresponds with mammary growth senescence. Cell Tissue Res, 310(3): 313–320

DOI PMID

40
StinglJ (2009). Detection and analysis of mammary gland stem cells. J Pathol, 217(2): 229–241

DOI PMID

41
StinglJ, EavesC J, KuuskU, EmermanJ T (1998). Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation, 63(4): 201–213

DOI PMID

42
StinglJ, EavesC J, WatsonC J (2006a). Phenotypic characterization of mouse mammary epithelial stem and progenitor cells. Breast Cancer Res, 8(Suppl 2): S5–S5

DOI

43
StinglJ, EirewP, RicketsonI, ShackletonM, VaillantF, ChoiD, LiH I, EavesC J (2006b). Purification and unique properties of mammary epithelial stem cells. Nature, 439(7079): 993–997

PMID

44
SumE Y, ShackletonM, HahmK, ThomasR M, O’ReillyL A, WagnerK U, LindemanG J, VisvaderJ E (2005). Loss of the LIM domain protein Lmo4 in the mammary gland during pregnancy impedes lobuloalveolar development. Oncogene, 24(30): 4820–4828

DOI PMID

45
TiedeB, KangY (2011). From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res, 21(2): 245–257

DOI PMID

46
TuZ, NinosJ M, MaZ, WangJ W, LemosM P, DespontsC, GhansahT, HowsonJ M, KerrW G (2001). Embryonic and hematopoietic stem cells express a novel SH2-containing inositol 5′-phosphatase isoform that partners with the Grb2 adapter protein. Blood, 98(7): 2028–2038

DOI PMID

47
VaillantF, Asselin-LabatM L, ShackletonM, ForrestN C, LindemanG J, VisvaderJ E (2008). The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res, 68(19): 7711–7717

DOI PMID

48
VaillantF, LindemanG J, VisvaderJ E (2011). Jekyll or Hyde: does Matrigel provide a more or less physiological environment in mammary repopulating assays? Breast Cancer Res, 13(3): 108

DOI PMID

49
van AmerongenR, BowmanA N, NusseR (2012). Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell, 11(3): 387–400

DOI PMID

50
Van KeymeulenA, RochaA S, OussetM, BeckB, BouvencourtG, RockJ, SharmaN, DekoninckS, BlanpainC (2011). Distinct stem cells contribute to mammary gland development and maintenance. Nature, 479(7372): 189–193

DOI PMID

51
VisvaderJ E (2011). Cells of origin in cancer. Nature, 469(7330): 314–322

DOI PMID

52
VisvaderJ E, SmithG H (2011). Murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harb Perspect Biol, 3(2): 3

DOI PMID

53
WagnerK U, BoulangerC A, HenryM D, SgagiasM, HennighausenL, SmithG H (2002). An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development, 129(6): 1377–1386

PMID

54
WangD, GaoH, BandyopadhyayA, WuA, YehI T, ChenY, ZouY, HuangC, WalterC A, DongQ, SunL Z(2014). Pubertal bisphenol a exposure alters murine mammary stem cell (MaSC) function leading to early neoplasia in regenerated glands. Cancer Prev Res (Phila), 7(4): 445–455

55
WelmB E, TeperaS B, VeneziaT, GraubertT A, RosenJ M, GoodellM A (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol, 245(1): 42–56

DOI PMID

56
ZengY A, NusseR (2010). Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell, 6(6): 568–577

DOI PMID

Outlines

/