The dynamics of murine mammary stem/progenitor cells

Qiaoxiang DONG, Lu-Zhe SUN

PDF(710 KB)
PDF(710 KB)
Front. Biol. ›› 2014, Vol. 9 ›› Issue (3) : 175-185. DOI: 10.1007/s11515-014-1308-0
REVIEW
REVIEW

The dynamics of murine mammary stem/progenitor cells

Author information +
History +

Abstract

The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups.

Keywords

mammary stem cell / cell hierarchy

Cite this article

Download citation ▾
Qiaoxiang DONG, Lu-Zhe SUN. The dynamics of murine mammary stem/progenitor cells. Front. Biol., 2014, 9(3): 175‒185 https://doi.org/10.1007/s11515-014-1308-0

References

[1]
AlviA J, ClaytonH, JoshiC, EnverT, AshworthA, VivancoM, DaleT C, SmalleyM J (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Res, 5(1): R1–R8
CrossRef Pubmed Google scholar
[2]
Asselin-LabatM L, ShackletonM, StinglJ, VaillantF, ForrestN C, EavesC J, VisvaderJ E, LindemanG J (2006). Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst, 98: 1011–1014
[3]
Asselin-LabatM L, VaillantF, SheridanJ M, PalB, WuD, SimpsonE R, YasudaH, SmythG K, MartinT J, LindemanG J, VisvaderJ E (2010). Control of mammary stem cell function by steroid hormone signalling. Nature, 465(7299): 798–802
CrossRef Pubmed Google scholar
[4]
BaiL, RohrschneiderL R (2010). s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue. Genes Dev, 24(17): 1882–1892
CrossRef Pubmed Google scholar
[5]
BarkerN, HuchM, KujalaP, van de WeteringM, SnippertH J, van EsJ H, SatoT, StangeD E, BegthelH, van den BornM, DanenbergE, van den BrinkS, KorvingJ, AboA, PetersP J, WrightN, PoulsomR, CleversH (2010). Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 6(1): 25–36
CrossRef Pubmed Google scholar
[6]
BarkerN, van EsJ H, JaksV, KasperM, SnippertH, ToftgårdR, CleversH (2008). Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb Symp Quant Biol, 73(0): 351–356
CrossRef Pubmed Google scholar
[7]
BarkerN, van EsJ H, KuipersJ, KujalaP, van den BornM, CozijnsenM, HaegebarthA, KorvingJ, BegthelH, PetersP J, CleversH (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165): 1003–1007
CrossRef Pubmed Google scholar
[8]
BernardoG M, LozadaK L, MiedlerJ D, HarburgG, HewittS C, MosleyJ D, GodwinA K, KorachK S, VisvaderJ E, KaestnerK H, Abdul-KarimF W, MontanoM M, KeriR A (2010). FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis. Development, 137(12): 2045–2054
CrossRef Pubmed Google scholar
[9]
BoothB W, MackD L, Androutsellis-TheotokisA, McKayR D, BoulangerC A, SmithG H (2008). The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci USA, 105(39): 14891–14896
CrossRef Pubmed Google scholar
[10]
BoulangerC A, MackD L, BoothB W, SmithG H (2007). Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc Natl Acad Sci USA, 104(10): 3871–3876
CrossRef Pubmed Google scholar
[11]
BoulangerC A, WagnerK U, SmithG H (2005). Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene, 24(4): 552–560
CrossRef Pubmed Google scholar
[12]
BrunoR D, SmithG H (2011). Functional characterization of stem cell activity in the mouse mammary gland. Stem Cell Rev, 7(2): 238–247
CrossRef Pubmed Google scholar
[13]
de VisserK E, CiampricottiM, MichalakE M, TanD W, SpeksnijderE N, HauC S, CleversH, BarkerN, JonkersJ (2012). Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland. J Pathol, 228(3): 300–309
CrossRef Pubmed Google scholar
[14]
DeomeK B, FaulkinL J Jr, BernH A, BlairP B (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res, 19(5): 515–520
Pubmed
[15]
DongQ, WangD, BandyopadhyayA, GaoH, GorenaK M, HildrethK, RebelV I, WalterC A, HuangC, SunL Z (2013). Mammospheres from murine mammary stem cell-enriched basal cells: clonal characteristics and repopulating potential. Stem Cell Res (Amst), 10(3): 396–404
CrossRef Pubmed Google scholar
[16]
dos SantosC O, RebbeckC, RozhkovaE, ValentineA, SamuelsA, KadiriL R, OstenP, HarrisE Y, UrenP J, SmithA D, HannonG J (2013). Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells. Proc Natl Acad Sci USA, 110(18): 7123–7130
CrossRef Pubmed Google scholar
[17]
FridriksdottirA J, PetersenO W, Rønnov-JessenL (2011). Mammary gland stem cells: current status and future challenges. Int J Dev Biol, 55(7–9): 719–729
CrossRef Pubmed Google scholar
[18]
FuN, LindemanG J, VisvaderJ E (2014). The mammary stem cell hierarchy. Curr Top Dev Biol, 107: 133–160
CrossRef Pubmed Google scholar
[19]
JeselsohnR, BrownN E, ArendtL, KlebbaI, HuM G, KuperwasserC, HindsP W (2010). Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell, 17(1): 65–76
CrossRef Pubmed Google scholar
[20]
JhoE H, ZhangT, DomonC, JooC K, FreundJ N, CostantiniF (2002). Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol, 22(4): 1172–1183
CrossRef Pubmed Google scholar
[21]
JoshiP A, JacksonH W, BeristainA G, Di GrappaM A, MoteP A, ClarkeC L, StinglJ, WaterhouseP D, KhokhaR (2010). Progesterone induces adult mammary stem cell expansion. Nature, 465(7299): 803–807
CrossRef Pubmed Google scholar
[22]
KaantaA S, VirtanenC, SelforsL M, BruggeJ S, NeelB G (2013). Evidence for a multipotent mammary progenitor with pregnancy-specific activity. Breast Cancer Res, 15(4): R65
CrossRef Pubmed Google scholar
[23]
KenneyN J, SmithG H, LawrenceE, BarrettJ C, SalomonD S (2001). Identification of stem cell units in the terminal end bud and duct of the mouse mammary gland. J Biomed Biotechnol, 1(3): 133–143
CrossRef Pubmed Google scholar
[24]
KretzschmarK, WattF M (2012). Lineage tracing. Cell, 148(1–2): 33–45
CrossRef Pubmed Google scholar
[25]
LimE, VaillantF, WuD, ForrestN C, PalB, HartA H, Asselin-LabatM L, GyorkiD E, WardT, PartanenA, FeleppaF, HuschtschaL I, ThorneH J, FoxS B, YanM, FrenchJ D, BrownM A, SmythG K, VisvaderJ E, LindemanG J, and the kConFab (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med, 15(8): 907–913
CrossRef Pubmed Google scholar
[26]
LustigB, JerchowB, SachsM, WeilerS, PietschT, KarstenU, van de WeteringM, CleversH, SchlagP M, BirchmeierW, BehrensJ (2002). Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol, 22(4): 1184–1193
CrossRef Pubmed Google scholar
[27]
ManingatP D, SenP, RijnkelsM, SunehagA L, HadsellD L, BrayM, HaymondM W (2009). Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics, 37(1): 12–22
CrossRef Pubmed Google scholar
[28]
MatulkaL A, TriplettA A, WagnerK U (2007). Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol, 303(1): 29–44
CrossRef Pubmed Google scholar
[29]
MolyneuxG, GeyerF C, MagnayF A, McCarthyA, KendrickH, NatrajanR, MackayA, GrigoriadisA, TuttA, AshworthA, Reis-FilhoJ S, SmalleyM J (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7(3): 403–417
CrossRef Pubmed Google scholar
[30]
OakesS R, NaylorM J, Asselin-LabatM L, BlazekK D, Gardiner-GardenM, HiltonH N, KazlauskasM, PritchardM A, ChodoshL A, PfefferP L, LindemanG J, VisvaderJ E, OrmandyC J (2008). The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev, 22(5): 581–586
CrossRef Pubmed Google scholar
[31]
PlaksV, BrenotA, LawsonD A, LinnemannJ R, Van KappelE C, WongK C, de SauvageF, KleinO D, WerbZ (2013). Lgr5-expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. Cell Reports, 3(1): 70–78
CrossRef Pubmed Google scholar
[32]
RiosA C, FuN Y, LindemanG J, VisvaderJ E (2014). In situ identification of bipotent stem cells in the mammary gland. Nature, 506(7488): 322–327
CrossRef Pubmed Google scholar
[33]
RohrschneiderL R, CustodioJ M, AndersonT A, MillerC P, GuH (2005). The intron 5/6 promoter region of the ship1 gene regulates expression in stem/progenitor cells of the mouse embryo. Dev Biol, 283(2): 503–521
CrossRef Pubmed Google scholar
[34]
ShackletonM, VaillantF, SimpsonK J, StinglJ, SmythG K, Asselin-LabatM L, WuL, LindemanG J, VisvaderJ E (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439(7072): 84–88
CrossRef Pubmed Google scholar
[35]
ShehataM, TeschendorffA, SharpG, NovcicN, RussellA, AvrilS, PraterM, EirewP, CaldasC, WatsonC J, StinglJ (2012). Phenotypic and functional characterization of the luminal cell hierarchy of the mammary gland. Breast Cancer Res, 14(5): R134
CrossRef Pubmed Google scholar
[36]
SleemanK E, KendrickH, AshworthA, IsackeC M, SmalleyM J (2006). CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res, 8(1): R7
CrossRef Pubmed Google scholar
[37]
SmithG H, ChepkoG (2001). Mammary epithelial stem cells. Microsc Res Tech, 52(2): 190–203
CrossRef Pubmed Google scholar
[38]
SmithG H, MedinaD (2008). Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res, 10(1): 203
CrossRef Pubmed Google scholar
[39]
SmithG H, StricklandP, DanielC W (2002). Putative epithelial stem cell loss corresponds with mammary growth senescence. Cell Tissue Res, 310(3): 313–320
CrossRef Pubmed Google scholar
[40]
StinglJ (2009). Detection and analysis of mammary gland stem cells. J Pathol, 217(2): 229–241
CrossRef Pubmed Google scholar
[41]
StinglJ, EavesC J, KuuskU, EmermanJ T (1998). Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation, 63(4): 201–213
CrossRef Pubmed Google scholar
[42]
StinglJ, EavesC J, WatsonC J (2006a). Phenotypic characterization of mouse mammary epithelial stem and progenitor cells. Breast Cancer Res, 8(Suppl 2): S5–S5
CrossRef Google scholar
[43]
StinglJ, EirewP, RicketsonI, ShackletonM, VaillantF, ChoiD, LiH I, EavesC J (2006b). Purification and unique properties of mammary epithelial stem cells. Nature, 439(7079): 993–997
Pubmed
[44]
SumE Y, ShackletonM, HahmK, ThomasR M, O’ReillyL A, WagnerK U, LindemanG J, VisvaderJ E (2005). Loss of the LIM domain protein Lmo4 in the mammary gland during pregnancy impedes lobuloalveolar development. Oncogene, 24(30): 4820–4828
CrossRef Pubmed Google scholar
[45]
TiedeB, KangY (2011). From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res, 21(2): 245–257
CrossRef Pubmed Google scholar
[46]
TuZ, NinosJ M, MaZ, WangJ W, LemosM P, DespontsC, GhansahT, HowsonJ M, KerrW G (2001). Embryonic and hematopoietic stem cells express a novel SH2-containing inositol 5′-phosphatase isoform that partners with the Grb2 adapter protein. Blood, 98(7): 2028–2038
CrossRef Pubmed Google scholar
[47]
VaillantF, Asselin-LabatM L, ShackletonM, ForrestN C, LindemanG J, VisvaderJ E (2008). The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res, 68(19): 7711–7717
CrossRef Pubmed Google scholar
[48]
VaillantF, LindemanG J, VisvaderJ E (2011). Jekyll or Hyde: does Matrigel provide a more or less physiological environment in mammary repopulating assays? Breast Cancer Res, 13(3): 108
CrossRef Pubmed Google scholar
[49]
van AmerongenR, BowmanA N, NusseR (2012). Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell, 11(3): 387–400
CrossRef Pubmed Google scholar
[50]
Van KeymeulenA, RochaA S, OussetM, BeckB, BouvencourtG, RockJ, SharmaN, DekoninckS, BlanpainC (2011). Distinct stem cells contribute to mammary gland development and maintenance. Nature, 479(7372): 189–193
CrossRef Pubmed Google scholar
[51]
VisvaderJ E (2011). Cells of origin in cancer. Nature, 469(7330): 314–322
CrossRef Pubmed Google scholar
[52]
VisvaderJ E, SmithG H (2011). Murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harb Perspect Biol, 3(2): 3
CrossRef Pubmed Google scholar
[53]
WagnerK U, BoulangerC A, HenryM D, SgagiasM, HennighausenL, SmithG H (2002). An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development, 129(6): 1377–1386
Pubmed
[54]
WangD, GaoH, BandyopadhyayA, WuA, YehI T, ChenY, ZouY, HuangC, WalterC A, DongQ, SunL Z(2014). Pubertal bisphenol a exposure alters murine mammary stem cell (MaSC) function leading to early neoplasia in regenerated glands. Cancer Prev Res (Phila), 7(4): 445–455
[55]
WelmB E, TeperaS B, VeneziaT, GraubertT A, RosenJ M, GoodellM A (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol, 245(1): 42–56
CrossRef Pubmed Google scholar
[56]
ZengY A, NusseR (2010). Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell, 6(6): 568–577
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported in part by funding from National Institutes of Health Grant R01 ES022057, the Mary Kay Foundation (No. 082-12), and the National Natural Science Foundation of China (Grant No. 81373031).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(710 KB)

Accesses

Citations

Detail

Sections
Recommended

/