Mobile silencing in plants: what is the signal and what defines the target

Dacheng LIANG, E. Jean FINNEGAN, Elizebeth S. DENNIS, Peter M. WATERHOUSE, Ming-Bo WANG

PDF(247 KB)
PDF(247 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (2) : 140-146. DOI: 10.1007/s11515-011-1145-3
REVIEW
REVIEW

Mobile silencing in plants: what is the signal and what defines the target

Author information +
History +

Abstract

RNA-mediated silencing in plants can spread from cell to cell and over a long distance, and such mobile silencing has been extensively studied in the past decade. However, major questions remain as to what is the exact nature of the mobile silencing signals, how the components of the RNA-directed DNA methylation pathway are involved, and why systemic spread of silencing has only been observed for transgenes but not endogenous genes. In this review, we provide an overview of the current knowledge on mobile gene silencing in plants and present a model where systemic silencing involves long nuclear RNA transcripts that serve as a template to amplify primary siRNA signals.

Cite this article

Download citation ▾
Dacheng LIANG, E. Jean FINNEGAN, Elizebeth S. DENNIS, Peter M. WATERHOUSE, Ming-Bo WANG. Mobile silencing in plants: what is the signal and what defines the target. Front Biol, 2011, 6(2): 140‒146 https://doi.org/10.1007/s11515-011-1145-3

References

[1]
Allen E, Xie Z, Gustafson A M, Carrington J C (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121(2): 207–221
CrossRef Pubmed Google scholar
[2]
Bagasra O, Prilliman K R (2004). RNA interference: the molecular immune system. J Mol Histol, 35(6): 545–553
CrossRef Pubmed Google scholar
[3]
Baulcombe D (2004). RNA silencing in plants. Nature, 431(7006): 356–363
CrossRef Pubmed Google scholar
[4]
Brosnan C A, Mitter N, Christie M, Smith N A, Waterhouse P M, Carroll B J (2007). Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci USA, 104(37): 14741–14746
CrossRef Pubmed Google scholar
[5]
Chinnusamy V, Zhu J K (2009). Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 12(2): 133–139
CrossRef Pubmed Google scholar
[6]
Crete P, Leuenberger S, Iglesias V A, Suarez V, Schöb H, Holtorf H, van Eeden S, Meins F Jr (2001). Graft transmission of induced and spontaneous post-transcriptional silencing of chitinase genes. Plant J, 28(5): 493–501
CrossRef Pubmed Google scholar
[7]
Daxinger L, Kanno T, Bucher E, van der Winden J, Naumann U, Matzke A J, Matzke M (2009). A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. EMBO J, 28(1): 48–57
CrossRef Pubmed Google scholar
[8]
Dunoyer P, Brosnan C A, Schott G, Wang Y, Jay F, Alioua A, Himber C, Voinnet O (2010b). An endogenous, systemic RNAi pathway in plants. EMBO J, 29(10): 1699–1712
CrossRef Pubmed Google scholar
[41]
Dunoyer P, Himber C, Ruiz-Ferrer V, Alioua A, Voinnet O (2007). Intra- and intercellular RNA interference in Arabidopsis thaliana requires component of the microRNA and heterochromatic silencing pathways. Nat Genet, 39(7): 848–856
CrossRef Pubmed Google scholar
[9]
Dunoyer P, Himber C, Voinnet O (2005). DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet, 37(12): 1356–1360
CrossRef Pubmed Google scholar
[10]
Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington J C, Voinnet O (2010a). Small RNA duplexes function as mobile silencing signals between plant cells. Science, 328(5980): 912–916
CrossRef Pubmed Google scholar
[11]
Fusaro A F, Matthew L, Smith N A, Curtin S J, Dedic-Hagan J, Ellacott G A, Watson J M, Wang M B, Brosnan C, Carroll B J, Waterhouse P M (2006). RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep, 7(11): 1168–1175
CrossRef Pubmed Google scholar
[12]
Hamilton A J, Baulcombe D C (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286(5441): 950–952
CrossRef Pubmed Google scholar
[13]
Herr A J, Baulcombe D C (2004). RNA silencing pathways in plants. Cold Spring Harb Symp Quant Biol, 69(1): 363–370
CrossRef Pubmed Google scholar
[14]
Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003). Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J, 22(17): 4523–4533
CrossRef Pubmed Google scholar
[15]
Kalantidis K, Schumacher H T, Alexiadis T, Helm J M (2008). RNA silencing movement in plants. Biol cell, 100(1): 13–26
[16]
Klahre U, Crété P, Leuenberger S A, Iglesias V A, Meins F Jr (2002). High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc Natl Acad Sci USA, 99(18): 11981–11986
CrossRef Pubmed Google scholar
[17]
Lakatos L, Csorba T, Pantaleo V, Chapman E J, Carrington J C, Liu Y P, Dolja V V, Calvino L F, López-Moya J J, Burgyán J (2006). Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J, 25(12): 2768–2780
CrossRef Pubmed Google scholar
[18]
Law J A, Jacobsen S E (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet, 11(3): 204–220
CrossRef Pubmed Google scholar
[19]
Mallory A C, Ely L, Smith T H, Marathe R, Anandalakshmi R, Fagard M, Vaucheret H, Pruss G, Bowman L, Vance V B (2001). HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell, 13(3): 571–583
Pubmed
[20]
Metzlaff M, O’Dell M, Cluster P D, Flavell R B (1997). RNA-mediated RNA degradation and chalcone synthase A silencing in petunia. Cell, 88(6): 845–854
CrossRef Pubmed Google scholar
[21]
Mlotshwa S, Voinnet O, Mette M F, Matzke M, Vaucheret H, Ding S W, Pruss G, Vance V B (2002). RNA silencing and the mobile silencing signal. Plant Cell, 14(Suppl): S289–S301
Pubmed
[22]
Molnar A, Melnyk C W, Bassett A, Hardcastle T J, Dunn R, Baulcombe D C (2010). Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science, 328(5980): 872–875
CrossRef Pubmed Google scholar
[23]
Palauqui J C, Elmayan T, Pollien J M, Vaucheret H (1997). Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J, 16(15): 4738–4745
CrossRef Pubmed Google scholar
[24]
Roberts A G, Cruz S S, Roberts I M, Prior D, Turgeon R, Oparka K J (1997). Phloem unloading in sink leaves of Nicotiana benthamiana: Comparison of a fluorescent solute with a fluorescent virus. Plant Cell, 9(8): 1381–1396
CrossRef Pubmed Google scholar
[25]
Shaharuddin N A, Han Y, Li H, Grierson D (2006). The mechanism of graft transmission of sense and antisense gene silencing in tomato plants. FEBS Lett, 580(28-29): 6579–6586
CrossRef Pubmed Google scholar
[26]
Smith L M, Pontes O, Searle I, Yelina N, Yousafzai F K, Herr A J, Pikaard C S, Baulcombe D C (2007). An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell, 19(5): 1507–1521
CrossRef Pubmed Google scholar
[27]
Tijsterman M, Plasterk R H (2004). Dicers at RISC; the mechanism of RNAi. Cell, 117(1): 1–3
CrossRef Pubmed Google scholar
[28]
Vaistij F E, Jones L, Baulcombe D C (2002). Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell, 14(4): 857–867
CrossRef Pubmed Google scholar
[29]
Voinnet O (2005). Non-cell autonomous RNA silencing. FEBS Lett, 579(26): 5858–5871
CrossRef Pubmed Google scholar
[30]
Voinnet O (2008). Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci, 13(7): 317–328
CrossRef Pubmed Google scholar
[31]
Voinnet O, Baulcombe D C (1997). Systemic signalling in gene silencing. Nature, 389(6651): 553
CrossRef Pubmed Google scholar
[32]
Voinnet O, Vain P, Angell S, Baulcombe D C (1998). Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell, 95(2): 177–187
CrossRef Pubmed Google scholar
[33]
Wang M B, Dennis E S (2009). SPT5-like, a new component in plant RdDM. EMBO Rep, 10(6): 573–575
CrossRef Pubmed Google scholar
[34]
Wang M B, Metzlaff M (2005). RNA silencing and antiviral defense in plants. Curr Opin Plant Biol, 8(2): 216–222
CrossRef Pubmed Google scholar
[35]
Wang M B, Waterhouse P M (2000). High-efficiency silencing of a β-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation. Plant Mol Biol, 43(1): 67–82
CrossRef Pubmed Google scholar
[36]
Wassenegger M, Krczal G (2006). Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci, 11(3): 142–151
CrossRef Pubmed Google scholar
[37]
Waterhouse P M, Wang M B, Finnegan E J (2001). Role of short RNAs in gene silencing. Trends Plant Sci, 6(7): 297–301
CrossRef Pubmed Google scholar
[38]
Xie Z, Johansen L K, Gustafson A M, Kasschau K D, Lellis A D, Zilberman D, Jacobsen S E, Carrington J C (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol, 2(5): E104
CrossRef Pubmed Google scholar
[39]
Yoshikawa M, Peragine A, Park M Y, Poethig R S (2005). A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev, 19(18): 2164–2175
CrossRef Pubmed Google scholar
[40]
Zhang B, Pan X, Cobb G P, Anderson T A (2006). Plant microRNA: a small regulatory molecule with big impact. Dev Biol, 289(1): 3–16
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(247 KB)

Accesses

Citations

Detail

Sections
Recommended

/