Cross-talking between autophagy and viral infection in mammalian cells

Hongya HAN, Lishu ZHANG, Xinxian DAI, Yanpeng ZHENG

PDF(307 KB)
PDF(307 KB)
Front. Biol. ›› 2010, Vol. 5 ›› Issue (6) : 507-515. DOI: 10.1007/s11515-010-0760-8
REVIEW
REVIEW

Cross-talking between autophagy and viral infection in mammalian cells

Author information +
History +

Abstract

Autophagy is a cellular process in degradation of long-lived proteins and organelles in the cytosol for maintaining cellular homeostasis, which has been linked to a wide range of human health and disease states, including viral infection. The viral infected cells exhibit a complicated cross-talking between autophagy and virus. It has been shown that autophagy interacts with both adaptive and innate immunity. For adaptive immunity, viral antigens can be processed in autophagosomes by acidic proteases before major histocompatibility complex (MHC) class II presentation. For innate immunity, autophagy may assist in the delivery of viral nucleic acids to endosomal TLRs and also functions as a part of the TLR-or-PKR-downstream responses. Autophagy was also reported to suppress the magnitude of host innate antiviral immunity in certain cases. On the other hand, viruses has evolved many strategies to combat or utilize the host autophagy for their own benefit. In this review we discussed recent advances toward clarifying the cross-talking between autophagy and viral infection in mammalian cells.

Keywords

cross-talking / autophagy / viral infection

Cite this article

Download citation ▾
Hongya HAN, Lishu ZHANG, Xinxian DAI, Yanpeng ZHENG. Cross-talking between autophagy and viral infection in mammalian cells. Front Biol, 2010, 5(6): 507‒515 https://doi.org/10.1007/s11515-010-0760-8

References

[1]
Ait-Goughoulte M, Kanda T, Meyer K, Ryerse J S, Ray R B, Ray R (2008). Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol, 82(5): 2241–2249
CrossRef Pubmed Google scholar
[2]
Alexander D E, Ward S L, Mizushima N, Levine B, Leib D A (2007). Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J Virol, 81(22): 12128–12134
CrossRef Pubmed Google scholar
[3]
Boya P, Mellén M A, de la Rosa E J (2008). How autophagy is related to programmed cell death during the development of the nervous system. Biochem Soc Trans, 36(Pt 5): 813–817
CrossRef Pubmed Google scholar
[4]
Bursch W, Ellinger A (2005). Autophagy—a basic mechanism and a potential role for neurodegeneration. Folia Neuropathol, 43(4): 297–310
Pubmed
[5]
Cecconi F, Levine B (2008). The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell, 15(3): 344–357
CrossRef Pubmed Google scholar
[6]
Chaumorcel M, Souquère S, Pierron G, Codogno P, Esclatine A (2008). Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanism. Autophagy, 4(1): 46–53
Pubmed
[7]
Choi B H, Choi M, Jeon H Y, Rho H M (2001). Hepatitis B viral X protein overcomes inhibition of E2F1 activity by pRb on the human Rb gene promoter. DNA Cell Biol, 20(2): 75–80
CrossRef Pubmed Google scholar
[8]
Chou J, Kern E R, Whitley R J, Roizman B (1990). Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science, 250(4985): 1262–1266
CrossRef Pubmed Google scholar
[9]
Chou J, Roizman B (1986). The terminal a sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the L component. J Virol, 57(2): 629–637
Pubmed
[10]
Chou J, Roizman B (1992). The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci USA, 89(8): 3266–3270
CrossRef Pubmed Google scholar
[11]
Chou J, Roizman B (1994). Herpes simplex virus 1 gamma(1)34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proc Natl Acad Sci USA, 91(12): 5247–5251
CrossRef Pubmed Google scholar
[12]
Cuervo A M (2004). Autophagy: many paths to the same end. Mol Cell Biochem, 263(1–2): 55–72
CrossRef Pubmed Google scholar
[13]
Dales S, Eggers H J, Tamm I, Palade G E (1965). Electron microscopic study of the formation of poliovirus. Virology, 26(3): 379–389
CrossRef Pubmed Google scholar
[14]
Dan H C, Cooper M J, Cogswell P C, Duncan J A, Ting J P, Baldwin A S (2008). Akt-dependent regulation of NF-kappaB is controlled by mTOR and Raptor in association with IKK. Genes Dev, 22(11): 1490–1500
CrossRef Google scholar
[15]
Delgado M A, Elmaoued R A, Davis A S, Kyei G, Deretic V (2008). Toll-like receptors control autophagy. EMBO J, 27(7): 1110–1121
CrossRef Pubmed Google scholar
[16]
Denizot M, Varbanov M, Espert L, Robert-Hebmann V, Sagnier S, Garcia E, Curriu M, Mamoun R, Blanco J, Biard-Piechaczyk M (2008). HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells. Autophagy, 4(8): 998–1008
Pubmed
[17]
Dreux M, Chisari F V (2009). Autophagy proteins promote hepatitis C virus replication. Autophagy, 5(8): 1224–1225
CrossRef Pubmed Google scholar
[18]
Dreux M, Gastaminza P, Wieland S F, Chisari F V (2009). The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci USA, 106(33): 14046–14051
CrossRef Pubmed Google scholar
[19]
Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, Codogno P, Biard-Piechaczyk M (2006). Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest, 116(8): 2161–2172
CrossRef Pubmed Google scholar
[20]
Fricke J, Voss C, Thumm M, Meyers G (2004). Processing of a pestivirus protein by a cellular protease specific for light chain 3 of microtubule-associated proteins. J Virol, 78(11): 5900–5912
CrossRef Pubmed Google scholar
[21]
Gajewska M, Sobolewska A, Kozlowski M, Motyl T (2008). Role of autophagy in mammary gland development. J Physiol Pharmacol, 59(Suppl 9): 237–249
Pubmed
[22]
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan J L, Mizushima N (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol, 181(3): 497–510
CrossRef Pubmed Google scholar
[23]
Heymann D (2006). Autophagy: A protective mechanism in response to stress and inflammation. Curr Opin Investig Drugs, 7(5): 443–450
Pubmed
[24]
Huang S C, Chang C L, Wang P S, Tsai Y, Liu H S (2009). Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol, 81(7): 1241–1252
CrossRef Pubmed Google scholar
[25]
Jaakkola P M, Pursiheimo J P (2009). p62 degradation by autophagy: another way for cancer cells to survive under hypoxia. Autophagy, 5(3): 410–412
CrossRef Pubmed Google scholar
[26]
Jaboin J J, Hwang M, Lu B (2009). Autophagy in lung cancer. Methods Enzymol, 453: 287–304
CrossRef Pubmed Google scholar
[27]
Jackson W T, Giddings T H Jr, Taylor M P, Mulinyawe S, Rabinovitch M, Kopito R R, Kirkegaard K (2005). Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol, 3(5): e156
CrossRef Pubmed Google scholar
[28]
Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin K Q, Ishii K J, Kawai T, Akira S, Suzuki K, Okuda K (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA, 104(35): 14050–14055
CrossRef Pubmed Google scholar
[29]
Kadowaki M, Karim M R, Carpi A, Miotto G (2006). Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med, 27(5–6): 426–443
CrossRef Pubmed Google scholar
[30]
Kaisho T, Akira S (2006). Toll-like receptor function and signaling. J Allergy Clin Immunol, 117(5): 979–987, quiz 988
CrossRef Pubmed Google scholar
[31]
Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T (2001). Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep, 2(4): 330–335
CrossRef Pubmed Google scholar
[32]
Kirkegaard K, Jackson W T (2005). Topology of double-membraned vesicles and the opportunity for non-lytic release of cytoplasm. Autophagy, 1(3): 182–184
CrossRef Pubmed Google scholar
[33]
Kirkegaard K, Taylor M P, Jackson W T (2004). Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol, 2(4): 301–314
CrossRef Pubmed Google scholar
[34]
Klionsky D J (2005a). Autophagy. Curr Biol, 15(8): R282–R283
CrossRef Pubmed Google scholar
[35]
Klionsky D J (2005b). The molecular machinery of autophagy: unanswered questions. J Cell Sci, 118(Pt 1): 7–18
CrossRef Pubmed Google scholar
[36]
Komatsu M, Kominami E, Tanaka K (2006a). Autophagy and neurodegeneration. Autophagy, 2(4): 315–317
Pubmed
[37]
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006b). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441(7095): 880–884
CrossRef Pubmed Google scholar
[38]
Kundu M, Thompson C B (2008). Autophagy: basic principles and relevance to disease. Annu Rev Pathol, 3(1): 427–455
CrossRef Pubmed Google scholar
[39]
Kunz J B, Schwarz H, Mayer A (2004). Determination of four sequential stages during microautophagy in vitro. J Biol Chem, 279(11): 9987–9996
CrossRef Pubmed Google scholar
[40]
Kyei G B, Dinkins C, Davis A S, Roberts E, Singh S B, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, Federico M, Panganiban A, Vergne I, Deretic V (2009). Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol, 186(2): 255–268
CrossRef Pubmed Google scholar
[41]
Lee H K, Lund J M, Ramanathan B, Mizushima N, Iwasaki A (2007). Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science, 315(5817): 1398–1401
CrossRef Pubmed Google scholar
[42]
Lee Y R, Lei H Y, Liu M T, Wang J R, Chen S H, Jiang-Shieh Y F, Lin Y S, Yeh T M, Liu C C, Liu H S (2008). Autophagic machinery activated by dengue virus enhances virus replication. Virology, 374(2): 240–248
CrossRef Pubmed Google scholar
[43]
Leib D A, Machalek M A, Williams B R, Silverman R H, Virgin H W (2000). Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci USA, 97(11): 6097–6101
CrossRef Pubmed Google scholar
[44]
Levine B (2007). Cell biology: autophagy and cancer. Nature, 446(7137): 745–747
CrossRef Pubmed Google scholar
[45]
Levine B, Klionsky D J (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 6(4): 463–477
CrossRef Pubmed Google scholar
[46]
Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh B H, Jung J U (2006). Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol, 8(7): 688–698
CrossRef Pubmed Google scholar
[47]
Liang X H, Kleeman L K, Jiang H H, Gordon G, Goldman J E, Berry G, Herman B, Levine B (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol, 72(11): 8586–8596
Pubmed
[48]
Massey A C, Zhang C, Cuervo A M (2006). Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol, 73: 205–235
CrossRef Pubmed Google scholar
[49]
Mathew R, Karantza-Wadsworth V, White E (2007). Role of autophagy in cancer. Nat Rev Cancer, 7(12): 961–967
CrossRef Pubmed Google scholar
[50]
Morita E, Sugamura K (2002). Human parvovirus B19-induced cell cycle arrest and apoptosis. Springer Semin Immunopathol, 24(2): 187–199
CrossRef Pubmed Google scholar
[51]
Nakashima A, Tanaka N, Tamai K, Kyuuma M, Ishikawa Y, Sato H, Yoshimori T, Saito S, Sugamura K (2006). Survival of parvovirus B19-infected cells by cellular autophagy. Virology, 349(2): 254– 263
CrossRef Pubmed Google scholar
[52]
Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib D A, Levine B (2007). HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe, 1(1): 23–35
CrossRef Pubmed Google scholar
[53]
Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Münz C (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science, 307(5709): 593–596
CrossRef Pubmed Google scholar
[54]
Pattingre S, Tassa A, Qu X, Garuti R, Liang X H, Mizushima N, Packer M, Schneider M D, Levine B (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6): 927–939
CrossRef Pubmed Google scholar
[55]
Prentice E, Jerome W G, Yoshimori T, Mizushima N, Denison M R (2004). Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem, 279(11): 10136–10141
CrossRef Pubmed Google scholar
[56]
Py B F, Boyce M, Yuan J (2009). A critical role of eEF-2K in mediating autophagy in response to multiple cellular stresses. Autophagy, 5(3): 393–396
CrossRef Pubmed Google scholar
[57]
Rosenbluth J M, Pietenpol J A (2009). mTOR regulates autophagy-associated genes downstream of p73. Autophagy, 5(1): 114–116
CrossRef Pubmed Google scholar
[58]
Schmid D, Pypaert M, Münz C (2007). Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity, 26(1): 79–92
CrossRef Pubmed Google scholar
[59]
Shi C S, Kehrl J H (2008). MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem, 283(48): 33175–33182
CrossRef Pubmed Google scholar
[60]
Sir D, Chen W L, Choi J, Wakita T, Yen T S, Ou J H (2008a). Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology, 48(4): 1054–1061
CrossRef Pubmed Google scholar
[61]
Sir D, Liang C, Chen W L, Jung J U, Ou J H (2008b). Perturbation of autophagic pathway by hepatitis C virus. Autophagy, 4(6): 830–831
Pubmed
[62]
Snijder E J, van der Meer Y, Zevenhoven-Dobbe J, Onderwater J J, van der Meulen J, Koerten H K, Mommaas A M (2006). Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol, 80(12): 5927–5940
CrossRef Pubmed Google scholar
[63]
Strawbridge A B, Blum J S (2007). Autophagy in MHC class II antigen processing. Curr Opin Immunol, 19(1): 87–92
CrossRef Pubmed Google scholar
[64]
Suhy D A, Giddings T H Jr, Kirkegaard K (2000). Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol, 74(19): 8953–8965
CrossRef Pubmed Google scholar
[65]
Takeuchi O, Akira S (2007). Recognition of viruses by innate immunity. Immunol Rev, 220(1): 214–224
CrossRef Pubmed Google scholar
[66]
Tallóczy Z, Jiang W, Virgin H W 4th, Leib D A, Scheuner D, Kaufman R J, Eskelinen E L, Levine B (2002). Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway. Proc Natl Acad Sci USA, 99(1): 190–195
CrossRef Pubmed Google scholar
[67]
Tallóczy Z, Virgin H W 4th, Levine B (2006). PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy, 2(1): 24–29
Pubmed
[68]
Tang H, Da L, Mao Y, Li Y, Li D, Xu Z, Li F, Wang Y, Tiollais P, Li T, Zhao M (2009). Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression. Hepatology, 49(1): 60–71
CrossRef Google scholar
[69]
Taylor M P, Kirkegaard K (2007). Modification of cellular autophagy protein LC3 by poliovirus. J Virol, 81(22): 12543–12553
CrossRef Pubmed Google scholar
[70]
Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008). Autophagy is essential for preimplantation development of mouse embryos. Science, 321(5885): 117–120
CrossRef Pubmed Google scholar
[71]
Wang C W, Klionsky D J (2003). The molecular mechanism of autophagy. Mol Med, 9(3–4): 65–76
Pubmed
[72]
Wong J, Zhang J, Si X, Gao G, Mao I, McManus B M, Luo H (2008). Autophagosome supports coxsackievirus B3 replication in host cells. J Virol, 82(18): 9143–9153
CrossRef Pubmed Google scholar
[73]
Yang Y P, Liang Z Q, Gu Z L, Qin Z H (2005). Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin, 26(12): 1421–1434
CrossRef Pubmed Google scholar
[74]
Yin V P, Thummel C S (2005). Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin Cell Dev Biol, 16(2): 237–243
CrossRef Pubmed Google scholar
[75]
Zeng X, Overmeyer J H, Maltese W A (2006). Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci, 119(Pt 2): 259–270
CrossRef Pubmed Google scholar
[76]
Zhou Z, Jiang X, Liu D, Fan Z,Hu X, Yan J, Wang M, Gao G F (2009). Autophagy is involved in influenza A virus replication. Autophagy, 5(3): 321–328
CrossRef Pubmed Google scholar

Acknowledgements

The study was supported by grants from the National Natural Science Foundation of China (Grant No. 30700696).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(307 KB)

Accesses

Citations

Detail

Sections
Recommended

/