Sliding window games for cooperative building temperature control using a distributed learning method

Zhaohui ZHANG , Ruilong DENG , Tao YUAN , S. Joe QIN

Front. Eng ›› 2017, Vol. 4 ›› Issue (3) : 304 -314.

PDF (582KB)
Front. Eng ›› 2017, Vol. 4 ›› Issue (3) : 304 -314. DOI: 10.15302/J-FEM-2017045
RESEARCH ARTICLE
RESEARCH ARTICLE

Sliding window games for cooperative building temperature control using a distributed learning method

Author information +
History +
PDF (582KB)

Abstract

In practice, an energy consumer often consists of a set of residential or commercial buildings, with individual units that are expected to cooperate to achieve overall optimization under modern electricity operations, such as time-of-use price. Global utility is decomposed to the payoff of each player, and each game is played over a prediction horizon through the design of a series of sliding window games by treating each building as a player. During the games, a distributed learning algorithm based on game theory is proposed such that each building learns to play a part of the global optimum through state transition. The proposed scheme is applied to a case study of three buildings to demonstrate its effectiveness.

Keywords

game theory / demand response / HVAC control / multi-building system

Cite this article

Download citation ▾
Zhaohui ZHANG, Ruilong DENG, Tao YUAN, S. Joe QIN. Sliding window games for cooperative building temperature control using a distributed learning method. Front. Eng, 2017, 4(3): 304-314 DOI:10.15302/J-FEM-2017045

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chai BChen  JYang Z Zhang Y  (2014). Demand response management with multiple utility companies: a two-level game approach. IEEE Transactions on Smart Grid5(2): 722–731 

[2]

Deng RYang  ZChen J Asr N R Chow M Y  (2014). Residential energy consumption scheduling: a coupled-constraint game approach. IEEE Transactions on Smart Grid5(3): 1340–1350 

[3]

Deng RYang  ZChow M Y Chen J (2015). A survey on demand response in smart grids: mathematical models and approaches. IEEE Transactions on Industrial Informatics11(3): 570–582 

[4]

Deng RZhang  ZRen J Liang H  (2016). Indoor temperature control of cost-effective smart buildings via real-time smart grid communications. In: Global Communications Conference (GLOBECOM), 2016 IEEE. IEEE, 1–6

[5]

Dimarogonas D V Frazzoli E Johansson K H  (2012). Distributed event-triggered control for multi-agent systems. IEEE Transactions on Automatic Control57(5): 1291–1297 

[6]

Dounis AManolakis  D (2001). Design of a fuzzy system for living space thermal-comfort regulation. Applied Energy69(2): 119–144 

[7]

Dounis A ICaraiscos  C (2009). Advanced control systems engineering for energy and comfort management in a building environment—a review. Renewable & Sustainable Energy Reviews13(6–7): 1246–1261 

[8]

Fan YFeng  GWang Y Song C (2013). Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica49(2): 671–675 

[9]

Forouzandehmehr NPerlaza  S MZhu  HPoor H V  (2013). A satisfaction game for heating, ventilation and air conditioning control of smart buildings. In: Proc. IEEE GLOBECOM, 3164–3169

[10]

Kolokotsa DStavrakakis  GKalaitzakis K Agoris D  (2002). Genetic algorithms optimized fuzzy controller for the indoor environmental management in buildings implemented using PLC and local operating networks. Engineering Applications of Artificial Intelligence15(5): 417–428 

[11]

Kummert MAndré  PNicolas J  (2001). Optimal heating control in a passive solar commercial building. Solar Energy69: 103–116 

[12]

Levermore G J  (2000). Building Energy Management Systems: Applications to Low-Energy HVAC and Natural Ventilation Control. Oxfordshire: Taylor & Francis

[13]

Li NChen  LLow S H  (2011). Optimal demand response based on utility maximization in power networks. In: 2011 IEEE Power and Energy Society General Meeting. IEEE, Piscataway, 1–8

[14]

Li ZRen  WLiu X Fu M (2013). Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. International Journal of Robust and Nonlinear Control23(5): 534–547 

[15]

Ma JQin  JSalsbury T Xu P (2012). Demand reduction in building energy systems based on economic model predictive control. Chemical Engineering Science67(1): 92–100 

[16]

Ma JQin  S JLi  BSalsbury T  (2011). Economic model predictive control for building energy systems. In: Innovative Smart Grid Technologies, 2011 IEEE PES. IEEE, 1–6

[17]

Ma JQin  S JSalsbury  T (2014). Application of economic MPC to the energy and demand minimization of a commercial building. Journal of Process Control24(8): 1282–1291 

[18]

Marden J RYoung  H PPao  L Y (2014). Achieving Pareto optimality through distributed learning. SIAM Journal on Control and Optimization52(5): 2753–2770 

[19]

McCartney K J Nicol J F  (2002). Developing an adaptive control algorithm for Europe. Energy and Buildings34: 623–635

[20]

Mohsenian-Rad A H Wong V W Jatskevich J Schober R Leon-Garcia A  (2010). Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Transactions on Smart Grid1(3): 320–331 

[21]

Moon J WKim  J J (2010). Ann-based thermal control models for residential buildings. Building and Environment45(7): 1612–1625 

[22]

Oldewurtel FParisio  AJones C N Morari M Gyalistras D Gwerder M Stauch V Lehmann B Wirth K  (2010). Energy efficient building climate control using stochastic model predictive control and weather predictions. In: American Control Conference (ACC)58(8):5100–5105

[23]

Shaikh P HNor  N B MNallagownden  PElamvazuthi I Ibrahim T  (2014). A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renewable & Sustainable Energy Reviews34: 409–429 

[24]

Širokỳ JOldewurtel  FCigler J Prívara S  (2011). Experimental analysis of model predictive control for an energy efficient building heating system. Applied Energy88(9): 3079–3087 

[25]

Wang SMa  Z (2008). Supervisory and optimal control of building HVAC systems: a review. HVAC & R Research14(1): 3–32 

[26]

Weng TAgarwal  Y (2012). From buildings to smart building-sensing and actuation to improve energy efficiency. IEEE Design & Test of Computers29(4): 36–44 

[27]

Wright J ALoosemore  H AFarmani  R (2002). Optimization of building thermal design and control by multi-criterion genetic algorithm. Energy and Buildings, 34: 959–972

[28]

Zaheer-Uddin MZheng  G (2000). Optimal control of time-scheduled heating, ventilating and air conditioning processes in buildings. Energy Conversion and Management41(1): 49–60 

[29]

Zhang ZDeng  RYuan T Qin S J  (2017). Distributed optimization of multi-building energy systems with spatially and temporally coupled constraints. In: American Control Conference (ACC), IEEE, 2913–2918

[30]

Zhang ZDeng  RYuan T Joe Qin S  (2016). Bi-level demand response game with information sharing among consumers. IFAC-PapersOnLine49(7): 663–668 

[31]

Zhang ZLi  GSalsbury T Qin S J  (2014). 389842 Game theory based distributed temperature control for energy saving of smart buildings. In: 2014 AICHE Annual Meeting, Atlanta, GA

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

AI Summary AI Mindmap
PDF (582KB)

6697

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/