Leveraging individual-level data to advance air pollution health risk management

Jianxun YANG, Wenjing WU, Miaomiao LIU, Jun BI

PDF(1026 KB)
PDF(1026 KB)
Front. Eng ›› 2022, Vol. 9 ›› Issue (2) : 337-342. DOI: 10.1007/s42524-022-0189-1
COMMENTS
COMMENTS

Leveraging individual-level data to advance air pollution health risk management

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Jianxun YANG, Wenjing WU, Miaomiao LIU, Jun BI. Leveraging individual-level data to advance air pollution health risk management. Front. Eng, 2022, 9(2): 337‒342 https://doi.org/10.1007/s42524-022-0189-1

References

[1]
BarwickP J LiS Rao D ZahurN B (2018). The healthcare cost of air pollution: Evidence from the world’s largest payment network. Working Paper 24688. National Bureau of Economic Research
[2]
Baylis,P 2020. Temperature and temperament: Evidence from Twitter. Journal of Public Economics, 184: 104161
CrossRef Google scholar
[3]
Caplin,A Ghandehari,M Lim,C Glimcher,P Thurston,G 2019. Advancing environmental exposure assessment science to benefit society. Nature Communications, 10( 1): 1236
CrossRef Pubmed Google scholar
[4]
Casas,L Simons,K Nawrot,T S Brasseur,O Declerck,P Buyl,R Coomans,D Nemery,B van Nieuwenhuyse,A 2016. Respiratory medication sales and urban air pollution in Brussels (2005 to 2011). Environment International, 94: 576– 582
CrossRef Pubmed Google scholar
[5]
Chaix,B 2018. Mobile sensing in environmental health and neighborhood research. Annual Review of Public Health, 39( 1): 367– 384
CrossRef Pubmed Google scholar
[6]
Colmer,J Hardman,I Shimshack,J Voorheis,J 2020. Disparities in PM2.5 air pollution in the United States. Science, 369( 6503): 575– 578
CrossRef Pubmed Google scholar
[7]
Deville Cavellin,L Weichenthal,S Tack,R Ragettli,M S Smargiassi,A Hatzopoulou,M 2016. Investigating the use of portable air pollution sensors to capture the spatial variability of traffic-related air pollution. Environmental Science & Technology, 50( 1): 313– 320
CrossRef Pubmed Google scholar
[8]
Deville,P Linard,C Martin,S Gilbert,M Stevens,F R Gaughan,A E Blondel,V D Tatem,A J 2014. Dynamic population mapping using mobile phone data. Proceedings of the National Academy of Sciences of the United States of America, 111( 45): 15888– 15893
CrossRef Pubmed Google scholar
[9]
Dewulf,B Neutens,T Lefebvre,W Seynaeve,G Vanpoucke,C Beckx,C van de Weghe,N 2016. Dynamic assessment of exposure to air pollution using mobile phone data. International Journal of Health Geographics, 15( 1): 14
CrossRef Pubmed Google scholar
[10]
Dons,E Laeremans,M Orjuela,J P Avila-Palencia,I Carrasco-Turigas,G Cole-Hunter,T Anaya-Boig,E Standaert,A de,Boever P Nawrot,T Götschi,T de,Nazelle A Nieuwenhuijsen,M Int,Panis L 2017. Wearable sensors for personal monitoring and estimation of inhaled traffic-related air pollution: Evaluation of methods. Environmental Science & Technology, 51( 3): 1859– 1867
CrossRef Pubmed Google scholar
[11]
Fan,Y Palacios,J Arcaya,M Luo,R Zheng,S 2021. Health perception and commuting choice: A survey experiment measuring behavioral trade-offs between physical activity benefits and pollution exposure risks. Environmental Research Letters, 16( 5): 054026
CrossRef Google scholar
[12]
Ghermandi,A Sinclair,M 2019. Passive crowdsourcing of social media in environmental research: A systematic map. Global Environmental Change, 55: 36– 47
CrossRef Google scholar
[13]
Guo,Y Li,Y 2018. Online amplification of air pollution risk perception: The moderating role of affect in information. Information Communication and Society, 21( 1): 80– 93
CrossRef Google scholar
[14]
Hanigan,I C Rolfe,M I Knibbs,L D Salimi,F Cowie,C T Heyworth,J Marks,G B Guo,Y Cope,M Bauman,A Jalaludin,B Morgan,G G 2019. All-cause mortality and long-term exposure to low level air pollution in the “45 and up study” cohort, Sydney, Australia, 2006–2015. Environment International, 126: 762– 770
CrossRef Pubmed Google scholar
[15]
Hankey,S Lindsey,G Marshall,J D 2017. Population-level exposure to particulate air pollution during active travel: Planning for low-exposure, health-promoting cities. Environmental Health Perspectives, 125( 4): 527– 534
CrossRef Pubmed Google scholar
[16]
HongW WeiY Wang S (2021). Left behind in perception of air pollution? A hidden form of spatial injustice in China. Environment and Planning C: Politics and Space, in press, doi:10.1177/23996544211036145
[17]
Liu,M Huang,Y Ma,Z Jin, Z Liu,X Wang,H Liu,Y Wang,J Jantunen,M Bi,J Kinney, P L 2017. Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012. Environment International, 98: 75– 81
CrossRef Pubmed Google scholar
[18]
Nyhan,M Grauwin,S Britter,R Misstear,B McNabola,A Laden,F Barrett,S R H Ratti,C 2016. “Exposure Track”—The impact of mobile-device-based mobility patterns on quantifying population exposure to air pollution. Environmental Science & Technology, 50( 17): 9671– 9681
CrossRef Pubmed Google scholar
[19]
Ou,Y West, J J Smith,S J Nolte,C G Loughlin,D H 2020. Air pollution control strategies directly limiting national health damages in the US. Nature Communications, 11( 1): 957
CrossRef Pubmed Google scholar
[20]
Piel,F B Fecht,D Hodgson,S Blangiardo,M Toledano,M Hansell,A L Elliott,P 2020. Small-area methods for investigation of environment and health. International Journal of Epidemiology, 49( 2): 686– 699
CrossRef Pubmed Google scholar
[21]
Qin,J Han,S 2009. Neurocognitive mechanisms underlying identification of environmental risks. Neuropsychologia, 47( 2): 397– 405
CrossRef Pubmed Google scholar
[22]
Su,J G Barrett,M A Henderson,K Humblet,O Smith,T Sublett,J W Nesbitt,L Hogg,C van Sickle,D Sublett,J L 2017. Feasibility of deploying inhaler sensors to identify the impacts of environmental triggers and built environment factors on asthma short-acting bronchodilator use. Environmental Health Perspectives, 125( 2): 254– 261
CrossRef Pubmed Google scholar
[23]
Sun,C Kahn,M E Zheng,S 2017. Self-protection investment exacerbates air pollution exposure inequality in urban China. Ecological Economics, 131: 468– 474
CrossRef Google scholar
[24]
Tainio,M Jovanovic,Andersen Z Nieuwenhuijsen,M J Hu,L de, Nazelle A An, R Garcia,L M T Goenka,S Zapata-Diomedi,B Bull,F de,Sá T H 2021. Air pollution, physical activity and health: A mapping review of the evidence. Environment International, 147: 105954
CrossRef Pubmed Google scholar
[25]
Tang,R Tian,L Thach,T Q Tsui,T H Brauer,M Lee,M Allen,R Yuchi,W Lai,P C Wong,P Barratt,B 2018. Integrating travel behavior with land use regression to estimate dynamic air pollution exposure in Hong Kong. Environment International, 113: 100– 108
CrossRef Pubmed Google scholar
[26]
Tsou,M M Lung,S C C Shen,Y S Liu,C H Hsieh,Y H Chen,N Hwang,J S 2021. A community-based study on associations between PM2.5and PM1 exposure and heart rate variability using wearable low-cost sensing devices. Environmental Pollution, 277: 116761
CrossRef Pubmed Google scholar
[27]
Vanroy,C Vanlandewijck,Y Cras,P Feys,H Truijen,S Michielsen,M Vissers,D 2014. Is a coded physical activity diary valid for assessing physical activity level and energy expenditure in stroke patients?. PLoS One, 9( 6): e98735
CrossRef Pubmed Google scholar
[28]
Yang,J Qu,S Liu, M Liu,X Gao,Q He,W Ji, J S Bi,J 2021. Gray cityscape caused by particulate matter pollution hampers human stress recovery. Journal of Cleaner Production, 279: 123215
CrossRef Google scholar
[29]
Yue,H He,C Huang, Q Yin,D Bryan,B A 2020. Stronger policy required to substantially reduce deaths from PM2.5 pollution in China. Nature Communications, 11( 1): 1462
CrossRef Pubmed Google scholar
[30]
Zheng,S Wang,J Sun,C Zhang,X Kahn,M E 2019. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nature Human Behaviour, 3( 3): 237– 243
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1026 KB)

Accesses

Citations

Detail

Sections
Recommended

/