RESEARCH ARTICLE

Wireless multicarrier digital transmission via frames: Capacity analysis and optimization design

  • Fangming HAN , 1,2 ,
  • Xianda ZHANG 1,2
Expand
  • 1. Department of Automation, Tsinghua University, Beijing 100084, China
  • 2. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

Received date: 28 Apr 2011

Accepted date: 16 Aug 2011

Published date: 05 Jun 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

By treating information transmission as tiling over the time-frequency plane, we propose a digital signal transmission scheme employing overcomplete frames as modulation pulses. The new scheme can achieve a signaling rate larger than the Nyquist rate. We first analyze the capacity performance of the frame transmission scheme over additive white Gaussian noise (AWGN) channels. It proves that the proposed scheme can achieve the Shannon capacity asymptotically. Next, we design the Gabor frame system parameters in time-frequency dispersive channels. It is shown that the pulses shape and the time-frequency separation should be matched to the channel dispersion parameters to achieve the minimum energy perturbation. Numerical results are presented to verify the theoretical findings.

Cite this article

Fangming HAN , Xianda ZHANG . Wireless multicarrier digital transmission via frames: Capacity analysis and optimization design[J]. Frontiers of Electrical and Electronic Engineering, 2012 , 7(2) : 261 -269 . DOI: 10.1007/s11460-011-0173-8

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 60975041, 61071067, and 61033004).
1
Akansu A N, Duhamel P, Lin X, de Courville M. Orthogonal transmultiplexers in communication: A review. IEEE Transactions on Signal Processing, 1998, 46(4): 979-995

DOI

2
Weinstein S B, Ebert P M. Data transmission by frequency division multiplexing using the discrete Fourier transform. IEEE Transactions on Communication Technology, 1971, 19(5): 628-634

DOI

3
Kozek W, Molisch A F. Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels. IEEE Journal on Selected Areas in Communications, 1998, 16(8): 1579-1589

DOI

4
Haas R, Belfiore J C. A time-frequency well-localized pulse for multiple carrier transmission. Wireless Personal Communications, 1997, 5(1): 1-18

DOI

5
Strohmer T, Beaver S. Optimal OFDM design for time-frequency dispersive channels. IEEE Transactions on Communications, 2003, 51(7): 1111-1122

DOI

6
Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992

7
Bölcskei H, Duhamel P, Hleiss R. Orthogonalization of OFDM/OQAM pulse shaping filters using the discrete Zak transform. Signal Processing, 2003, 83(7): 1379-1391

DOI

8
Jung P, Wunder G. The WSSUS pulse design problem in multicarrier transmission. IEEE Transactions on Communications, 2007, 55(10): 1918-1928

DOI

9
Matz G, Schafhuber D, Grochenig K, Hartmann M, Hlawatsch F. Analysis optimization, and implementation of low interference wireless multicarrier systems. IEEE Transactions on Wireless Communications, 2007, 6(5): 1921-1931

DOI

10
Heath R W Jr, Strohmer T, Paulraj A J. On quasi-orthogonal signatures for CDMA systems. IEEE Transactions on Information Theory, 2006, 52(3): 1217-1226

DOI

11
Goyal V K, Kovacevic J. Generalized multiple description coding with correlating transforms. IEEE Transactions on Information Theory, 2001, 47(6): 2199-2224

DOI

12
Goyal V K, Kovacevic J, Kelner J A. Quantized frame expansions with erasures. Applied and Computational Harmonic Analysis, 2001, 10(3): 203-233

DOI

13
Hochwald B M, Marzetta T L, Richardson T J, Sweldens W, Urbanke R. Systematic design of unitary space-time constellations. IEEE Transactions on Information Theory, 2000, 46(6): 1962-1973

DOI

14
Heath R W Jr, Bölcskei H, Paulraj A J. Space-time signaling and frame theory. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. 2001, 4: 2445-2448

15
Heath R W Jr, Paulraj A J.Linear dispersion codes for MIMO systems based on frame theory. IEEE Transactions on Signal Processing, 2002, 50(10): 2429-2441

16
Han F M, Zhang X D. Wireless multicarrier digital transmission via Weyl-Heisenberg frames over time-frequency dispersive channels. IEEE Transactions on Communications, 2009, 57(6): 1721-1733

DOI

17
Shannon C E.A mathematical theory of communication. The Bell System Technical Journal, 1948, 27: 379-423, 623-656

18
Nyquist H. Certain topics in telegraph transmission theory. AIEE Transactions, 1928, 47: 617-644

19
Shannon C E. Communication in the presence of noise. Proceedings of the IRE, 1949, 37(1): 10-21

20
Silverstein J W, Bai Z D. On the empirical distribution of eigenvalues of a class of large dimensional random matrices. Journal of Multivariate Analysis, 1995, 54(2): 175-192

DOI

21
Cover T M, Thomas J A. Elements of Information Theory. New York: Wiley, 1991

22
Gallager R G. Information Theory and Reliable Communication. New York: Wiley, 1968

23
Bello P A. Characterization of randomly time-variant linear channels. IEEE Transactions on Communications Systems, 1963, 11(4): 360-393

DOI

24
Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 1990, 36(5): 961-1005

DOI

25
Feichtinger H G, Strohmer T. Gabor Analysis and Algorithms: Theory and Applications. Boston: Birkhauser, 1998

26
Le Floch B, Alard M, Berrou C. Coded orthogonal frequency division multiplex. Proceedings of the IEEE, 1995, 83(6): 982-996

DOI

27
Schafhuber D, Matz G, Hlawatsch F. Pulse-shaping OFDM/BFDM systems for time-varying channels: ISI/ICI analysis, optimal pulse design, and efficient implementation. In: Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. 2002, 3: 1012-1016

28
Liu K, Kadous T, Sayeed A M. Orthogonal time-frequency signaling over doubly dispersive channels. IEEE Transactions on Information Theory, 2004, 50(11): 2583-2603

DOI

29
Cohen L. Time-Frequency Analysis. New York: Prentice-hall, 1995

30
Strohmer T. Approximation of dual Gabor frames, windows decay, and wireless communications. Applied and Computational Harmonic Analysis, 2001, 11(2): 243-262

DOI

31
Lyubarskii Y. Frames in the Bargmann space of entire functions. In: Levin B Y, ed. Entire and Subharmonic Functions. Vol. 11 of the series Advances in Soviet Mathematics. Berlin: Springer-Verlag, 1989

Outlines

/