Wireless multicarrier digital transmission via frames: Capacity analysis and optimization design

Fangming HAN, Xianda ZHANG

PDF(187 KB)
PDF(187 KB)
Front. Electr. Electron. Eng. ›› 2012, Vol. 7 ›› Issue (2) : 261-269. DOI: 10.1007/s11460-011-0173-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Wireless multicarrier digital transmission via frames: Capacity analysis and optimization design

Author information +
History +

Abstract

By treating information transmission as tiling over the time-frequency plane, we propose a digital signal transmission scheme employing overcomplete frames as modulation pulses. The new scheme can achieve a signaling rate larger than the Nyquist rate. We first analyze the capacity performance of the frame transmission scheme over additive white Gaussian noise (AWGN) channels. It proves that the proposed scheme can achieve the Shannon capacity asymptotically. Next, we design the Gabor frame system parameters in time-frequency dispersive channels. It is shown that the pulses shape and the time-frequency separation should be matched to the channel dispersion parameters to achieve the minimum energy perturbation. Numerical results are presented to verify the theoretical findings.

Keywords

overcomplete / frame / Nyquist rate / signaling efficiency / capacity

Cite this article

Download citation ▾
Fangming HAN, Xianda ZHANG. Wireless multicarrier digital transmission via frames: Capacity analysis and optimization design. Front Elect Electr Eng, 2012, 7(2): 261‒269 https://doi.org/10.1007/s11460-011-0173-8

References

[1]
Akansu A N, Duhamel P, Lin X, de Courville M. Orthogonal transmultiplexers in communication: A review. IEEE Transactions on Signal Processing, 1998, 46(4): 979-995
CrossRef Google scholar
[2]
Weinstein S B, Ebert P M. Data transmission by frequency division multiplexing using the discrete Fourier transform. IEEE Transactions on Communication Technology, 1971, 19(5): 628-634
CrossRef Google scholar
[3]
Kozek W, Molisch A F. Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels. IEEE Journal on Selected Areas in Communications, 1998, 16(8): 1579-1589
CrossRef Google scholar
[4]
Haas R, Belfiore J C. A time-frequency well-localized pulse for multiple carrier transmission. Wireless Personal Communications, 1997, 5(1): 1-18
CrossRef Google scholar
[5]
Strohmer T, Beaver S. Optimal OFDM design for time-frequency dispersive channels. IEEE Transactions on Communications, 2003, 51(7): 1111-1122
CrossRef Google scholar
[6]
Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
[7]
Bölcskei H, Duhamel P, Hleiss R. Orthogonalization of OFDM/OQAM pulse shaping filters using the discrete Zak transform. Signal Processing, 2003, 83(7): 1379-1391
CrossRef Google scholar
[8]
Jung P, Wunder G. The WSSUS pulse design problem in multicarrier transmission. IEEE Transactions on Communications, 2007, 55(10): 1918-1928
CrossRef Google scholar
[9]
Matz G, Schafhuber D, Grochenig K, Hartmann M, Hlawatsch F. Analysis optimization, and implementation of low interference wireless multicarrier systems. IEEE Transactions on Wireless Communications, 2007, 6(5): 1921-1931
CrossRef Google scholar
[10]
Heath R W Jr, Strohmer T, Paulraj A J. On quasi-orthogonal signatures for CDMA systems. IEEE Transactions on Information Theory, 2006, 52(3): 1217-1226
CrossRef Google scholar
[11]
Goyal V K, Kovacevic J. Generalized multiple description coding with correlating transforms. IEEE Transactions on Information Theory, 2001, 47(6): 2199-2224
CrossRef Google scholar
[12]
Goyal V K, Kovacevic J, Kelner J A. Quantized frame expansions with erasures. Applied and Computational Harmonic Analysis, 2001, 10(3): 203-233
CrossRef Google scholar
[13]
Hochwald B M, Marzetta T L, Richardson T J, Sweldens W, Urbanke R. Systematic design of unitary space-time constellations. IEEE Transactions on Information Theory, 2000, 46(6): 1962-1973
CrossRef Google scholar
[14]
Heath R W Jr, Bölcskei H, Paulraj A J. Space-time signaling and frame theory. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. 2001, 4: 2445-2448
[15]
Heath R W Jr, Paulraj A J.Linear dispersion codes for MIMO systems based on frame theory. IEEE Transactions on Signal Processing, 2002, 50(10): 2429-2441
[16]
Han F M, Zhang X D. Wireless multicarrier digital transmission via Weyl-Heisenberg frames over time-frequency dispersive channels. IEEE Transactions on Communications, 2009, 57(6): 1721-1733
CrossRef Google scholar
[17]
Shannon C E.A mathematical theory of communication. The Bell System Technical Journal, 1948, 27: 379-423, 623-656
[18]
Nyquist H. Certain topics in telegraph transmission theory. AIEE Transactions, 1928, 47: 617-644
[19]
Shannon C E. Communication in the presence of noise. Proceedings of the IRE, 1949, 37(1): 10-21
[20]
Silverstein J W, Bai Z D. On the empirical distribution of eigenvalues of a class of large dimensional random matrices. Journal of Multivariate Analysis, 1995, 54(2): 175-192
CrossRef Google scholar
[21]
Cover T M, Thomas J A. Elements of Information Theory. New York: Wiley, 1991
[22]
Gallager R G. Information Theory and Reliable Communication. New York: Wiley, 1968
[23]
Bello P A. Characterization of randomly time-variant linear channels. IEEE Transactions on Communications Systems, 1963, 11(4): 360-393
CrossRef Google scholar
[24]
Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 1990, 36(5): 961-1005
CrossRef Google scholar
[25]
Feichtinger H G, Strohmer T. Gabor Analysis and Algorithms: Theory and Applications. Boston: Birkhauser, 1998
[26]
Le Floch B, Alard M, Berrou C. Coded orthogonal frequency division multiplex. Proceedings of the IEEE, 1995, 83(6): 982-996
CrossRef Google scholar
[27]
Schafhuber D, Matz G, Hlawatsch F. Pulse-shaping OFDM/BFDM systems for time-varying channels: ISI/ICI analysis, optimal pulse design, and efficient implementation. In: Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. 2002, 3: 1012-1016
[28]
Liu K, Kadous T, Sayeed A M. Orthogonal time-frequency signaling over doubly dispersive channels. IEEE Transactions on Information Theory, 2004, 50(11): 2583-2603
CrossRef Google scholar
[29]
Cohen L. Time-Frequency Analysis. New York: Prentice-hall, 1995
[30]
Strohmer T. Approximation of dual Gabor frames, windows decay, and wireless communications. Applied and Computational Harmonic Analysis, 2001, 11(2): 243-262
CrossRef Google scholar
[31]
Lyubarskii Y. Frames in the Bargmann space of entire functions. In: Levin B Y, ed. Entire and Subharmonic Functions. Vol. 11 of the series Advances in Soviet Mathematics. Berlin: Springer-Verlag, 1989

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 60975041, 61071067, and 61033004).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(187 KB)

Accesses

Citations

Detail

Sections
Recommended

/