RESEARCH ARTICLE

Preliminary design of 1 MW, Ku-band gyrotron traveling-wave amplifier

  • Chongqing JIAO
Expand
  • Beijing Key Laboratory of High Voltage & EMC, North China Electric Power University, Beijing 102206, China

Received date: 06 Jan 2009

Accepted date: 23 Mar 2009

Published date: 05 Sep 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The preliminary design results of a 1-MW, Ku-band gyrotron traveling wave amplifier (gyro-TWA) are presented. Operating at the second cyclotron harmonic of the TE11 mode, the amplifier characterizes good stability even in the case of no distributed losses loaded, which could potentially allow it to be operated at high average power. Large signal simulation shows that the amplifier can generate a saturated peak power of about 1 MW with efficiency of 26.6%, gain of 31 dB, and 3-dB bandwidth of about 1 GHz when driven by a 100 kV, 40 A electron beam with 5% axial velocity spread.

Cite this article

Chongqing JIAO . Preliminary design of 1 MW, Ku-band gyrotron traveling-wave amplifier[J]. Frontiers of Electrical and Electronic Engineering, 2009 , 4(3) : 330 -334 . DOI: 10.1007/s11460-009-0054-6

Acknowledgements

This work was supported by the Funds for Doctor Degree Teacher of North China Electric Power University (Grant No. 200822008).
1
Felch K L, Danly B G, Jory H R, Kreischer K E, Lawson W, Levush B, Temkin R J. Characteristics and applications of fast-wave gyrodevices. Proceedings of the IEEE, 1999, 87(5): 752-781

DOI

2
Chu K R. Overview of research on the gyrotron traveling-wave amplifier. IEEE Transactions on Plasma Science, 2002, 30(3): 903-908

DOI

3
Granatstein V L, Levush B, Danly B G, Parker R K. A quarter century of gyrotron research and development. IEEE Transactions on Plasma Science, 1997, 25(6): 1322-1335

DOI

4
Lau Y Y, Chu K R, Barnett L R, Granatstein V L. Gyrotron travelling wave amplifier: I. Analysis of oscillations. International Journal of Infrared and Millimeter Waves, 1981, 2(3): 373-393

DOI

5
Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R. Ultrahigh gain gyrotron traveling wave amplifier. Physical Review Letters, 1998, 81(21): 4760-4763

DOI

6
Garven M, Calame J P, Danly B G, Nguyen K T, Levush B, Wood F N, Pershing D E. A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region. IEEE Transactions on Plasma Science, 2002, 30(3): 885-893

DOI

7
Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T, Dialetis D J. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier. IEEE Transactions on Plasma Science, 1999, 27(2): 391-404

DOI

8
Bratman V L, Cross A W, Denisov G G, He W, Phelps A D, Ronald K, Samsonov S V, Whyte C G, Young A R. High-gain wide-band gyrotron traveling-wave amplifier with a helically corrugated waveguide. Physical Review Letters, 2000, 84(12): 2746-2749

DOI

9
Wang Q S, McDermott D B, Luhmann N C Jr. Operation of a stable 200-kW second-harmonic gyro-TWT amplifier. IEEE Transactions on Plasma Science, 1996, 24(3): 700-706

DOI

10
Rodgers J, Guo H, Granaatstein V L, Chen S H, Nusinovich G S, Walter M, Zhao J. High efficiency, phase-locked operation of the harmonic-multiplying inverted gyrotwystron oscillator. IEEE Transactions on Plasma Science, 1999, 27(2): 412-421

DOI

11
Jiao C Q, Luo J R. Preliminary design of a harmonic-doubling gyrotron traveling wave amplifier. International Journal of Infrared and Millimeter Waves, 2007, 28(12): 1095-1101

DOI

12
Lin A T, Chu K R, Lin C C, Kou C S, McDermott D B, Luhmann N C Jr. Marginal stability design criterion for gyro-TWT’s and comparison of fundamental with second harmonic operation. International Journal of Electronics, 1992, 72(5): 873-885

DOI

13
Chu K R, Lin A T. Gain and bandwidth of the gyro-TWT and CARM amplifiers. IEEE Transactions on Plasma Science, 1988, 16(2): 90-104

DOI

14
Kou C S, Wang Q S, McDermott D B, Lin A T, Chin K R, Luhmann N C Jr. High-power harmonic gyro-TWT’s. I. Linear theory and oscillation study. IEEE Transactions on Plasma Science, 1992, 20(3): 155-162

DOI

15
Danly B G, Temkin R J. Generalized nonlinear harmonic gyrotron theory. Physics of Fluids, 1986, 29(2): 561-567

DOI

16
Wang Q S, Kou C S, McDermott D B, Lin A T, Chu K R, Luhmann N C. High-power harmonic gyro-TWT’s. II. Nonlinear theory and design. IEEE Transactions on Plasma Science, 1992, 20(3): 163-169

DOI

17
Jiao C Q, Luo J R. Linear and nonlinear analysis of a gyrotron traveling wave amplifier with misaligned electron beam. Physics of Plasmas, 2006, 13(11): 113101-1-113101-7

18
Lau Y Y, Chu K R, Barnett L, Granatstein V L. Gyrotron travelling wave amplifier: II. Effects of velocity spread and wall resistivity. International Journal of Infrared and Millimeter Waves, 1981, 2(3): 395-413

DOI

Outlines

/