Frontiers of Electrical and Electronic Engineering >
Preliminary design of 1 MW, Ku-band gyrotron traveling-wave amplifier
Received date: 06 Jan 2009
Accepted date: 23 Mar 2009
Published date: 05 Sep 2009
Copyright
The preliminary design results of a 1-MW, Ku-band gyrotron traveling wave amplifier (gyro-TWA) are presented. Operating at the second cyclotron harmonic of the TE11 mode, the amplifier characterizes good stability even in the case of no distributed losses loaded, which could potentially allow it to be operated at high average power. Large signal simulation shows that the amplifier can generate a saturated peak power of about 1 MW with efficiency of 26.6%, gain of 31 dB, and 3-dB bandwidth of about 1 GHz when driven by a 100 kV, 40 A electron beam with 5% axial velocity spread.
Chongqing JIAO . Preliminary design of 1 MW, Ku-band gyrotron traveling-wave amplifier[J]. Frontiers of Electrical and Electronic Engineering, 2009 , 4(3) : 330 -334 . DOI: 10.1007/s11460-009-0054-6
1 |
Felch K L, Danly B G, Jory H R, Kreischer K E, Lawson W, Levush B, Temkin R J. Characteristics and applications of fast-wave gyrodevices. Proceedings of the IEEE, 1999, 87(5): 752-781
|
2 |
Chu K R. Overview of research on the gyrotron traveling-wave amplifier. IEEE Transactions on Plasma Science, 2002, 30(3): 903-908
|
3 |
Granatstein V L, Levush B, Danly B G, Parker R K. A quarter century of gyrotron research and development. IEEE Transactions on Plasma Science, 1997, 25(6): 1322-1335
|
4 |
Lau Y Y, Chu K R, Barnett L R, Granatstein V L. Gyrotron travelling wave amplifier: I. Analysis of oscillations. International Journal of Infrared and Millimeter Waves, 1981, 2(3): 373-393
|
5 |
Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R. Ultrahigh gain gyrotron traveling wave amplifier. Physical Review Letters, 1998, 81(21): 4760-4763
|
6 |
Garven M, Calame J P, Danly B G, Nguyen K T, Levush B, Wood F N, Pershing D E. A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region. IEEE Transactions on Plasma Science, 2002, 30(3): 885-893
|
7 |
Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T, Dialetis D J. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier. IEEE Transactions on Plasma Science, 1999, 27(2): 391-404
|
8 |
Bratman V L, Cross A W, Denisov G G, He W, Phelps A D, Ronald K, Samsonov S V, Whyte C G, Young A R. High-gain wide-band gyrotron traveling-wave amplifier with a helically corrugated waveguide. Physical Review Letters, 2000, 84(12): 2746-2749
|
9 |
Wang Q S, McDermott D B, Luhmann N C Jr. Operation of a stable 200-kW second-harmonic gyro-TWT amplifier. IEEE Transactions on Plasma Science, 1996, 24(3): 700-706
|
10 |
Rodgers J, Guo H, Granaatstein V L, Chen S H, Nusinovich G S, Walter M, Zhao J. High efficiency, phase-locked operation of the harmonic-multiplying inverted gyrotwystron oscillator. IEEE Transactions on Plasma Science, 1999, 27(2): 412-421
|
11 |
Jiao C Q, Luo J R. Preliminary design of a harmonic-doubling gyrotron traveling wave amplifier. International Journal of Infrared and Millimeter Waves, 2007, 28(12): 1095-1101
|
12 |
Lin A T, Chu K R, Lin C C, Kou C S, McDermott D B, Luhmann N C Jr. Marginal stability design criterion for gyro-TWT’s and comparison of fundamental with second harmonic operation. International Journal of Electronics, 1992, 72(5): 873-885
|
13 |
Chu K R, Lin A T. Gain and bandwidth of the gyro-TWT and CARM amplifiers. IEEE Transactions on Plasma Science, 1988, 16(2): 90-104
|
14 |
Kou C S, Wang Q S, McDermott D B, Lin A T, Chin K R, Luhmann N C Jr. High-power harmonic gyro-TWT’s. I. Linear theory and oscillation study. IEEE Transactions on Plasma Science, 1992, 20(3): 155-162
|
15 |
Danly B G, Temkin R J. Generalized nonlinear harmonic gyrotron theory. Physics of Fluids, 1986, 29(2): 561-567
|
16 |
Wang Q S, Kou C S, McDermott D B, Lin A T, Chu K R, Luhmann N C. High-power harmonic gyro-TWT’s. II. Nonlinear theory and design. IEEE Transactions on Plasma Science, 1992, 20(3): 163-169
|
17 |
Jiao C Q, Luo J R. Linear and nonlinear analysis of a gyrotron traveling wave amplifier with misaligned electron beam. Physics of Plasmas, 2006, 13(11): 113101-1-113101-7
|
18 |
Lau Y Y, Chu K R, Barnett L, Granatstein V L. Gyrotron travelling wave amplifier: II. Effects of velocity spread and wall resistivity. International Journal of Infrared and Millimeter Waves, 1981, 2(3): 395-413
|
/
〈 | 〉 |