Preliminary design of 1 MW, Ku-band gyrotron traveling-wave amplifier

Chongqing JIAO

PDF(151 KB)
PDF(151 KB)
Front. Electr. Electron. Eng. ›› 2009, Vol. 4 ›› Issue (3) : 330-334. DOI: 10.1007/s11460-009-0054-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Preliminary design of 1 MW, Ku-band gyrotron traveling-wave amplifier

Author information +
History +

Abstract

The preliminary design results of a 1-MW, Ku-band gyrotron traveling wave amplifier (gyro-TWA) are presented. Operating at the second cyclotron harmonic of the TE11 mode, the amplifier characterizes good stability even in the case of no distributed losses loaded, which could potentially allow it to be operated at high average power. Large signal simulation shows that the amplifier can generate a saturated peak power of about 1 MW with efficiency of 26.6%, gain of 31 dB, and 3-dB bandwidth of about 1 GHz when driven by a 100 kV, 40 A electron beam with 5% axial velocity spread.

Keywords

gyrotron traveling wave amplifier (gyro-TWA) / Ku-band / millimeter wave amplifier

Cite this article

Download citation ▾
Chongqing JIAO. Preliminary design of 1 MW, Ku-band gyrotron traveling-wave amplifier. Front Elect Electr Eng Chin, 2009, 4(3): 330‒334 https://doi.org/10.1007/s11460-009-0054-6

References

[1]
Felch K L, Danly B G, Jory H R, Kreischer K E, Lawson W, Levush B, Temkin R J. Characteristics and applications of fast-wave gyrodevices. Proceedings of the IEEE, 1999, 87(5): 752-781
CrossRef Google scholar
[2]
Chu K R. Overview of research on the gyrotron traveling-wave amplifier. IEEE Transactions on Plasma Science, 2002, 30(3): 903-908
CrossRef Google scholar
[3]
Granatstein V L, Levush B, Danly B G, Parker R K. A quarter century of gyrotron research and development. IEEE Transactions on Plasma Science, 1997, 25(6): 1322-1335
CrossRef Google scholar
[4]
Lau Y Y, Chu K R, Barnett L R, Granatstein V L. Gyrotron travelling wave amplifier: I. Analysis of oscillations. International Journal of Infrared and Millimeter Waves, 1981, 2(3): 373-393
CrossRef Google scholar
[5]
Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R. Ultrahigh gain gyrotron traveling wave amplifier. Physical Review Letters, 1998, 81(21): 4760-4763
CrossRef Google scholar
[6]
Garven M, Calame J P, Danly B G, Nguyen K T, Levush B, Wood F N, Pershing D E. A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region. IEEE Transactions on Plasma Science, 2002, 30(3): 885-893
CrossRef Google scholar
[7]
Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T, Dialetis D J. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier. IEEE Transactions on Plasma Science, 1999, 27(2): 391-404
CrossRef Google scholar
[8]
Bratman V L, Cross A W, Denisov G G, He W, Phelps A D, Ronald K, Samsonov S V, Whyte C G, Young A R. High-gain wide-band gyrotron traveling-wave amplifier with a helically corrugated waveguide. Physical Review Letters, 2000, 84(12): 2746-2749
CrossRef Google scholar
[9]
Wang Q S, McDermott D B, Luhmann N C Jr. Operation of a stable 200-kW second-harmonic gyro-TWT amplifier. IEEE Transactions on Plasma Science, 1996, 24(3): 700-706
CrossRef Google scholar
[10]
Rodgers J, Guo H, Granaatstein V L, Chen S H, Nusinovich G S, Walter M, Zhao J. High efficiency, phase-locked operation of the harmonic-multiplying inverted gyrotwystron oscillator. IEEE Transactions on Plasma Science, 1999, 27(2): 412-421
CrossRef Google scholar
[11]
Jiao C Q, Luo J R. Preliminary design of a harmonic-doubling gyrotron traveling wave amplifier. International Journal of Infrared and Millimeter Waves, 2007, 28(12): 1095-1101
CrossRef Google scholar
[12]
Lin A T, Chu K R, Lin C C, Kou C S, McDermott D B, Luhmann N C Jr. Marginal stability design criterion for gyro-TWT’s and comparison of fundamental with second harmonic operation. International Journal of Electronics, 1992, 72(5): 873-885
CrossRef Google scholar
[13]
Chu K R, Lin A T. Gain and bandwidth of the gyro-TWT and CARM amplifiers. IEEE Transactions on Plasma Science, 1988, 16(2): 90-104
CrossRef Google scholar
[14]
Kou C S, Wang Q S, McDermott D B, Lin A T, Chin K R, Luhmann N C Jr. High-power harmonic gyro-TWT’s. I. Linear theory and oscillation study. IEEE Transactions on Plasma Science, 1992, 20(3): 155-162
CrossRef Google scholar
[15]
Danly B G, Temkin R J. Generalized nonlinear harmonic gyrotron theory. Physics of Fluids, 1986, 29(2): 561-567
CrossRef Google scholar
[16]
Wang Q S, Kou C S, McDermott D B, Lin A T, Chu K R, Luhmann N C. High-power harmonic gyro-TWT’s. II. Nonlinear theory and design. IEEE Transactions on Plasma Science, 1992, 20(3): 163-169
CrossRef Google scholar
[17]
Jiao C Q, Luo J R. Linear and nonlinear analysis of a gyrotron traveling wave amplifier with misaligned electron beam. Physics of Plasmas, 2006, 13(11): 113101-1-113101-7
[18]
Lau Y Y, Chu K R, Barnett L, Granatstein V L. Gyrotron travelling wave amplifier: II. Effects of velocity spread and wall resistivity. International Journal of Infrared and Millimeter Waves, 1981, 2(3): 395-413
CrossRef Google scholar

Acknowledgements

This work was supported by the Funds for Doctor Degree Teacher of North China Electric Power University (Grant No. 200822008).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(151 KB)

Accesses

Citations

Detail

Sections
Recommended

/