RESEARCH ARTICLE

Distributed fusion white noise deconvolution estimators

  • Xiaojun SUN ,
  • Zili DENG
Expand
  • Department of Automation, University of Heilongjiang, Harbin 150080, China

Received date: 07 Jul 2008

Accepted date: 09 Oct 2008

Published date: 05 Sep 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The white noise deconvolution or input white noise estimation problem has important applications in oil seismic exploration, communication and signal processing. By combining the Kalman filtering method with the modern time series analysis method, based on the autoregressive moving average (ARMA) innovation model, new distributed fusion white noise deconvolution estimators are presented by weighting local input white noise estimators for general multisensor systems with different local dynamic models and correlated noises. The new estimators can handle input white noise fused filtering, prediction and smoothing problems, and are applicable to systems with colored measurement noise. Their accuracy is higher than that of local white noise deconvolution estimators. To compute the optimal weights, the new formula for local estimation error cross-covariances is given. A Monte Carlo simulation for the system with Bernoulli-Gaussian input white noise shows their effectiveness and performance.

Cite this article

Xiaojun SUN , Zili DENG . Distributed fusion white noise deconvolution estimators[J]. Frontiers of Electrical and Electronic Engineering, 2009 , 4(3) : 270 -277 . DOI: 10.1007/s11460-009-0031-0

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 60874063), the Science and Technology Research Foundation of Heilongjiang Education Department (No. 11523037), and the Automatic Control Key Laboratory of Heilongjiang University.
1
Mendel J M. White-noise estimators for seismic data processing in oil exploration. IEEE Transactions on Automatic Control, 1977, 22(5): 694-706

DOI

2
Mendel J M. Minimum-variance deconvolution. IEEE Transactions on Geoscience and Remote Sensing, 1981, 19(3): 161-171

DOI

3
Mendel J M. Optimal Seismic Deconvolution: An Estimation Based Approach. New York: Academic Press, 1983

4
Mendel J M, Kormylo J. New fast optimal white-noise estimators for deconvolution. IEEE Transactions on Geoscience Electronics, 1977, 15(1): 32-41

DOI

5
Deng Z L, Zhang H S, Liu S J, Zhou L. Optimal and self-tuning white noise estimators with applications to deconvolution and filtering problems. Automatica, 1996, 32(2): 199-216

DOI

6
Deng Z L, Gao Y, Mao L, Li Y, Hao G. New approach to information fusion steady-state Kalman filtering. Automatica, 2005, 41(10): 1695-1707

DOI

7
Sun S L. Multi-sensor information fusion white noise filter weighted by scalars based on Kaman predictor. Automatica, 2004, 40(8): 1447-1453

DOI

8
Sun S L. Multisensor optimal information fusion input white noise deconvolution estimators. IEEE Transactions on Systems, Man, and Cybernetics–Part B, 2004, 34(4): 1886-1893

9
Sun X J, Gao Y, Deng Z L. Multisensor information fusion white noise deconvolution smoother. In: 2007 IEEE International Conference on Control and Automation, Guangzhou, China. 2007, 1741-1746

10
Sun X J, Wang J W, Deng Z L. Multisensor information fusion white noise deconvolution estimators. In: Proceedings of the International Colloquium on Information Fusion 2007, Xi’an, China. 2007, 71-78

11
Sun X J, Gao Y, Deng Z L. Information fusion white noise deconvolution estimators for time-varying systems. Signal Processing, 2008, 88(5): 1233-1247

DOI

12
Deng Z L, Li Y, Wang X. Multisensor optimal information fusion white noise deconvolution filter. Control Theory & Applications, 2006, 23(3): 439-442 (in Chinese)

13
Sun X J, Wang S G, Deng Z L. Multisensor information fusion steady-state white noise deconvolution estimators. In: Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China. 2008, 4990-4994

14
Gevers M, Wouters W R E. An innovation approach to the discrete-time realization problem. Quarterly Journal on Automatic, 1978, 19(2): 90-109

15
Deng Z L, Xu Y. General and unified white noise estimation approach based on Kalman filtering. Control Theory & Applications, 2004, 21(4): 501-506 (in Chinese)

16
Kormylo J, Mendel J M. Maximum likelihood detection and estimation of Bernoulli-Gaussian processes. IEEE Transactions on Information Theory, 1982, 28(3): 482-488

DOI

Outlines

/