Distributed fusion white noise deconvolution estimators

Xiaojun SUN, Zili DENG

PDF(178 KB)
PDF(178 KB)
Front. Electr. Electron. Eng. ›› 2009, Vol. 4 ›› Issue (3) : 270-277. DOI: 10.1007/s11460-009-0031-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Distributed fusion white noise deconvolution estimators

Author information +
History +

Abstract

The white noise deconvolution or input white noise estimation problem has important applications in oil seismic exploration, communication and signal processing. By combining the Kalman filtering method with the modern time series analysis method, based on the autoregressive moving average (ARMA) innovation model, new distributed fusion white noise deconvolution estimators are presented by weighting local input white noise estimators for general multisensor systems with different local dynamic models and correlated noises. The new estimators can handle input white noise fused filtering, prediction and smoothing problems, and are applicable to systems with colored measurement noise. Their accuracy is higher than that of local white noise deconvolution estimators. To compute the optimal weights, the new formula for local estimation error cross-covariances is given. A Monte Carlo simulation for the system with Bernoulli-Gaussian input white noise shows their effectiveness and performance.

Keywords

multisensor information fusion / deconvolution / white noise estimator / seismology / modern time series analysis method / Kalman filtering method

Cite this article

Download citation ▾
Xiaojun SUN, Zili DENG. Distributed fusion white noise deconvolution estimators. Front Elect Electr Eng Chin, 2009, 4(3): 270‒277 https://doi.org/10.1007/s11460-009-0031-0

References

[1]
Mendel J M. White-noise estimators for seismic data processing in oil exploration. IEEE Transactions on Automatic Control, 1977, 22(5): 694-706
CrossRef Google scholar
[2]
Mendel J M. Minimum-variance deconvolution. IEEE Transactions on Geoscience and Remote Sensing, 1981, 19(3): 161-171
CrossRef Google scholar
[3]
Mendel J M. Optimal Seismic Deconvolution: An Estimation Based Approach. New York: Academic Press, 1983
[4]
Mendel J M, Kormylo J. New fast optimal white-noise estimators for deconvolution. IEEE Transactions on Geoscience Electronics, 1977, 15(1): 32-41
CrossRef Google scholar
[5]
Deng Z L, Zhang H S, Liu S J, Zhou L. Optimal and self-tuning white noise estimators with applications to deconvolution and filtering problems. Automatica, 1996, 32(2): 199-216
CrossRef Google scholar
[6]
Deng Z L, Gao Y, Mao L, Li Y, Hao G. New approach to information fusion steady-state Kalman filtering. Automatica, 2005, 41(10): 1695-1707
CrossRef Google scholar
[7]
Sun S L. Multi-sensor information fusion white noise filter weighted by scalars based on Kaman predictor. Automatica, 2004, 40(8): 1447-1453
CrossRef Google scholar
[8]
Sun S L. Multisensor optimal information fusion input white noise deconvolution estimators. IEEE Transactions on Systems, Man, and Cybernetics–Part B, 2004, 34(4): 1886-1893
[9]
Sun X J, Gao Y, Deng Z L. Multisensor information fusion white noise deconvolution smoother. In: 2007 IEEE International Conference on Control and Automation, Guangzhou, China. 2007, 1741-1746
[10]
Sun X J, Wang J W, Deng Z L. Multisensor information fusion white noise deconvolution estimators. In: Proceedings of the International Colloquium on Information Fusion 2007, Xi’an, China. 2007, 71-78
[11]
Sun X J, Gao Y, Deng Z L. Information fusion white noise deconvolution estimators for time-varying systems. Signal Processing, 2008, 88(5): 1233-1247
CrossRef Google scholar
[12]
Deng Z L, Li Y, Wang X. Multisensor optimal information fusion white noise deconvolution filter. Control Theory & Applications, 2006, 23(3): 439-442 (in Chinese)
[13]
Sun X J, Wang S G, Deng Z L. Multisensor information fusion steady-state white noise deconvolution estimators. In: Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China. 2008, 4990-4994
[14]
Gevers M, Wouters W R E. An innovation approach to the discrete-time realization problem. Quarterly Journal on Automatic, 1978, 19(2): 90-109
[15]
Deng Z L, Xu Y. General and unified white noise estimation approach based on Kalman filtering. Control Theory & Applications, 2004, 21(4): 501-506 (in Chinese)
[16]
Kormylo J, Mendel J M. Maximum likelihood detection and estimation of Bernoulli-Gaussian processes. IEEE Transactions on Information Theory, 1982, 28(3): 482-488
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 60874063), the Science and Technology Research Foundation of Heilongjiang Education Department (No. 11523037), and the Automatic Control Key Laboratory of Heilongjiang University.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(178 KB)

Accesses

Citations

Detail

Sections
Recommended

/