Distributed fusion white noise deconvolution estimators

Xiaojun SUN , Zili DENG

Front. Electr. Electron. Eng. ›› 2009, Vol. 4 ›› Issue (3) : 270 -277.

PDF (178KB)
Front. Electr. Electron. Eng. ›› 2009, Vol. 4 ›› Issue (3) : 270 -277. DOI: 10.1007/s11460-009-0031-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Distributed fusion white noise deconvolution estimators

Author information +
History +
PDF (178KB)

Abstract

The white noise deconvolution or input white noise estimation problem has important applications in oil seismic exploration, communication and signal processing. By combining the Kalman filtering method with the modern time series analysis method, based on the autoregressive moving average (ARMA) innovation model, new distributed fusion white noise deconvolution estimators are presented by weighting local input white noise estimators for general multisensor systems with different local dynamic models and correlated noises. The new estimators can handle input white noise fused filtering, prediction and smoothing problems, and are applicable to systems with colored measurement noise. Their accuracy is higher than that of local white noise deconvolution estimators. To compute the optimal weights, the new formula for local estimation error cross-covariances is given. A Monte Carlo simulation for the system with Bernoulli-Gaussian input white noise shows their effectiveness and performance.

Keywords

multisensor information fusion / deconvolution / white noise estimator / seismology / modern time series analysis method / Kalman filtering method

Cite this article

Download citation ▾
Xiaojun SUN, Zili DENG. Distributed fusion white noise deconvolution estimators. Front. Electr. Electron. Eng., 2009, 4(3): 270-277 DOI:10.1007/s11460-009-0031-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mendel J M. White-noise estimators for seismic data processing in oil exploration. IEEE Transactions on Automatic Control, 1977, 22(5): 694-706

[2]

Mendel J M. Minimum-variance deconvolution. IEEE Transactions on Geoscience and Remote Sensing, 1981, 19(3): 161-171

[3]

Mendel J M. Optimal Seismic Deconvolution: An Estimation Based Approach. New York: Academic Press, 1983

[4]

Mendel J M, Kormylo J. New fast optimal white-noise estimators for deconvolution. IEEE Transactions on Geoscience Electronics, 1977, 15(1): 32-41

[5]

Deng Z L, Zhang H S, Liu S J, Zhou L. Optimal and self-tuning white noise estimators with applications to deconvolution and filtering problems. Automatica, 1996, 32(2): 199-216

[6]

Deng Z L, Gao Y, Mao L, Li Y, Hao G. New approach to information fusion steady-state Kalman filtering. Automatica, 2005, 41(10): 1695-1707

[7]

Sun S L. Multi-sensor information fusion white noise filter weighted by scalars based on Kaman predictor. Automatica, 2004, 40(8): 1447-1453

[8]

Sun S L. Multisensor optimal information fusion input white noise deconvolution estimators. IEEE Transactions on Systems, Man, and Cybernetics–Part B, 2004, 34(4): 1886-1893

[9]

Sun X J, Gao Y, Deng Z L. Multisensor information fusion white noise deconvolution smoother. In: 2007 IEEE International Conference on Control and Automation, Guangzhou, China. 2007, 1741-1746

[10]

Sun X J, Wang J W, Deng Z L. Multisensor information fusion white noise deconvolution estimators. In: Proceedings of the International Colloquium on Information Fusion 2007, Xi’an, China. 2007, 71-78

[11]

Sun X J, Gao Y, Deng Z L. Information fusion white noise deconvolution estimators for time-varying systems. Signal Processing, 2008, 88(5): 1233-1247

[12]

Deng Z L, Li Y, Wang X. Multisensor optimal information fusion white noise deconvolution filter. Control Theory & Applications, 2006, 23(3): 439-442 (in Chinese)

[13]

Sun X J, Wang S G, Deng Z L. Multisensor information fusion steady-state white noise deconvolution estimators. In: Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China. 2008, 4990-4994

[14]

Gevers M, Wouters W R E. An innovation approach to the discrete-time realization problem. Quarterly Journal on Automatic, 1978, 19(2): 90-109

[15]

Deng Z L, Xu Y. General and unified white noise estimation approach based on Kalman filtering. Control Theory & Applications, 2004, 21(4): 501-506 (in Chinese)

[16]

Kormylo J, Mendel J M. Maximum likelihood detection and estimation of Bernoulli-Gaussian processes. IEEE Transactions on Information Theory, 1982, 28(3): 482-488

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (178KB)

843

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/