RESEARCH ARTICLE

Finger-knuckle-print recognition using Gabor feature and MMDA

  • Wankou YANG ,
  • Changyin SUN ,
  • Zhenyu WANG
Expand
  • School of Automation, Southeast University, Nanjing 210096, China

Received date: 05 Jul 2010

Accepted date: 26 Jan 2011

Published date: 05 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Recently, a new biometrics recognition, finger-knuckle-print, has attracted the interest of researchers. The popular techniques used in face recognition are not applied in finger-knuckle-print recognition. Inspired by the success of Gabor in face recognition, we propose a method that uses Gabor feature and a multi-manifold discriminant analysis (MMDA) method to identify finger-knuckle-print. The experimental results show that our proposed method can work well.

Cite this article

Wankou YANG , Changyin SUN , Zhenyu WANG . Finger-knuckle-print recognition using Gabor feature and MMDA[J]. Frontiers of Electrical and Electronic Engineering, 0 , 6(2) : 374 -380 . DOI: 10.1007/s11460-011-0141-3

1
Zhang D. Automated Biometrics: Technologies and Systems. Dordrecht: Kluwer Academic, 2000

2
Jain A K, Flynn P, Ross A. Handbook of Biometrics. New York: Springer, 2007

3
E-channel system of the Hong Kong government. http://www.immd.gov.hk/ehtml/20041216.htm

4
Woodard D L, Flynn P J. Finger surface as a biometric identifier. Computer Vision and Image Understanding, 2005, 100(3): 357-384

DOI

5
Woodard D L, Flynn P J. Personal identification utilizing finger surface features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2005, 2: 1030-1036

6
Ravikanth C, Kumar A. Biometric authentication using finger-back surface. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2007, 1-6

7
Zhang L, Zhang L, Zhang D, Zhu H. Online finger-knuckleprint verification for personal authentication. Pattern Recognition, 2010, 43(7): 2560-2571

DOI

8
Liu C, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing, 2002, 11(4): 467-476

DOI

9
Zhang B, Shan S, Chen X, Gao W. Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Transactions on Image Processing, 2007, 16(1): 57-68

DOI

10
Yang W, Sun C, Zhang L. Face recognition using a multimanifold discriminant analysis method. In: Proceedings of the 20th International Conference on Pattern Recognition. 2010, 527-530

DOI

11
Hamouz M, Kittler J, Kamarainen J K, Paalanen P, Kälviäinen H, Matas J. Feature-based affine-invariant localization of faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(9): 1490-1495

DOI

12
Kamarainen J K, Kyrki V, Kälviäinen H. Invariance properties of Gabor filter-based features — overview and applications. IEEE Transactions on Image Processing, 2006, 15(5): 1088-1099

DOI

13
Jain A K, Duin R P W, Mao J. Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37

DOI

14
Fukunaga K. Introduction to Statistical Pattern Recognition. 2nd ed. Boston: Academic Press, 1990

15
Raudys S J, Jain A K. Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Transactions on Pattern Ana1ysis and Machine Intelligence, 1991, 13(3): 252-264

16
Li H, Jiang T, Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Transactions on Neural Networks, 2006, 17(1): 157-165

DOI

17
Yang W, Wang J, Ren M, Yang J, Zhang L. Feature extraction based on Laplacian bidirectional maximum margin criterion. Pattern Recognition, 2009, 42(11): 2327-2334

DOI

18
Kw K C, Pedry W. Face recognition using a fuzzy fisherface classifier. Pattern Recognition, 2005, 38(10): 1717-1732

DOI

19
Yang W, Wang J, Ren M, Zhang L, Yang J. Feature extraction using fuzzy inverse FDA. Neurocomputing, 2009, 72(13-15): 3384-3390

DOI

20
Yang W, Yan X, Zhang L, Sun C. Feature extraction based on fuzzy 2DLDA. Neurocomputing, 2010, 73(10-12): 1556-1561

DOI

21
Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323

DOI

22
Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326

DOI

23
He X, Yan S, Hu Y, Niyogi P, Zhang H. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340

DOI

24
Zhao D, Lin Z, Tang X. Laplacian PCA and its applications. In: Proceedings of IEEE International Conference on Computer Vision. 2007, 1-8

25
Zhao D, Liu Z, Xiao R, Tang X. Linear Laplacian discrimination for feature extraction. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2007, 1-7

26
Li B, Huang D S, Wang C, Liu K H. Feature extraction using constrained maximum variance mapping. Pattern Recognition, 2008, 41(11): 3287-3294

DOI

27
Wang H, Chen S, Hu Z, Zheng W. Locality-preserved maximum information projection. IEEE Transactions on Neural Networks, 2008, 19(4): 571-585

DOI

28
Zhang L, Zhang L, Zhang D. Finger-knuckle-print: a new biometric identifier. In: Proceedings of the IEEE International Conference on Image Processing. 2009, 1981-1984

29
Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86

DOI

30
Belhumeur V, Hespanha J, Kriegman D. Eigenfaces vs Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Ana1ysis and Machine Intelligence, 1997, 19(7): 711-720

31
Ojala T, Pietikainen M, Maenpaa T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987

DOI

Outlines

/