Finger-knuckle-print recognition using Gabor feature and MMDA

Wankou YANG, Changyin SUN, Zhenyu WANG

PDF(255 KB)
PDF(255 KB)
Front. Electr. Electron. Eng. ›› DOI: 10.1007/s11460-011-0141-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Finger-knuckle-print recognition using Gabor feature and MMDA

Author information +
History +

Abstract

Recently, a new biometrics recognition, finger-knuckle-print, has attracted the interest of researchers. The popular techniques used in face recognition are not applied in finger-knuckle-print recognition. Inspired by the success of Gabor in face recognition, we propose a method that uses Gabor feature and a multi-manifold discriminant analysis (MMDA) method to identify finger-knuckle-print. The experimental results show that our proposed method can work well.

Keywords

Gabor / multi-manifold discriminant analysis (MMDA) / feature extraction / finger-knuckle-print image recognition

Cite this article

Download citation ▾
Wankou YANG, Changyin SUN, Zhenyu WANG. Finger-knuckle-print recognition using Gabor feature and MMDA. Front Elect Electr Eng Chin, https://doi.org/10.1007/s11460-011-0141-3

References

[1]
Zhang D. Automated Biometrics: Technologies and Systems. Dordrecht: Kluwer Academic, 2000
[2]
Jain A K, Flynn P, Ross A. Handbook of Biometrics. New York: Springer, 2007
[3]
E-channel system of the Hong Kong government. http://www.immd.gov.hk/ehtml/20041216.htm
[4]
Woodard D L, Flynn P J. Finger surface as a biometric identifier. Computer Vision and Image Understanding, 2005, 100(3): 357-384
CrossRef Google scholar
[5]
Woodard D L, Flynn P J. Personal identification utilizing finger surface features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2005, 2: 1030-1036
[6]
Ravikanth C, Kumar A. Biometric authentication using finger-back surface. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2007, 1-6
[7]
Zhang L, Zhang L, Zhang D, Zhu H. Online finger-knuckleprint verification for personal authentication. Pattern Recognition, 2010, 43(7): 2560-2571
CrossRef Google scholar
[8]
Liu C, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing, 2002, 11(4): 467-476
CrossRef Google scholar
[9]
Zhang B, Shan S, Chen X, Gao W. Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Transactions on Image Processing, 2007, 16(1): 57-68
CrossRef Google scholar
[10]
Yang W, Sun C, Zhang L. Face recognition using a multimanifold discriminant analysis method. In: Proceedings of the 20th International Conference on Pattern Recognition. 2010, 527-530
CrossRef Google scholar
[11]
Hamouz M, Kittler J, Kamarainen J K, Paalanen P, Kälviäinen H, Matas J. Feature-based affine-invariant localization of faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(9): 1490-1495
CrossRef Google scholar
[12]
Kamarainen J K, Kyrki V, Kälviäinen H. Invariance properties of Gabor filter-based features — overview and applications. IEEE Transactions on Image Processing, 2006, 15(5): 1088-1099
CrossRef Google scholar
[13]
Jain A K, Duin R P W, Mao J. Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37
CrossRef Google scholar
[14]
Fukunaga K. Introduction to Statistical Pattern Recognition. 2nd ed. Boston: Academic Press, 1990
[15]
Raudys S J, Jain A K. Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Transactions on Pattern Ana1ysis and Machine Intelligence, 1991, 13(3): 252-264
[16]
Li H, Jiang T, Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Transactions on Neural Networks, 2006, 17(1): 157-165
CrossRef Google scholar
[17]
Yang W, Wang J, Ren M, Yang J, Zhang L. Feature extraction based on Laplacian bidirectional maximum margin criterion. Pattern Recognition, 2009, 42(11): 2327-2334
CrossRef Google scholar
[18]
Kw K C, Pedry W. Face recognition using a fuzzy fisherface classifier. Pattern Recognition, 2005, 38(10): 1717-1732
CrossRef Google scholar
[19]
Yang W, Wang J, Ren M, Zhang L, Yang J. Feature extraction using fuzzy inverse FDA. Neurocomputing, 2009, 72(13-15): 3384-3390
CrossRef Google scholar
[20]
Yang W, Yan X, Zhang L, Sun C. Feature extraction based on fuzzy 2DLDA. Neurocomputing, 2010, 73(10-12): 1556-1561
CrossRef Google scholar
[21]
Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323
CrossRef Google scholar
[22]
Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326
CrossRef Google scholar
[23]
He X, Yan S, Hu Y, Niyogi P, Zhang H. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
CrossRef Google scholar
[24]
Zhao D, Lin Z, Tang X. Laplacian PCA and its applications. In: Proceedings of IEEE International Conference on Computer Vision. 2007, 1-8
[25]
Zhao D, Liu Z, Xiao R, Tang X. Linear Laplacian discrimination for feature extraction. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2007, 1-7
[26]
Li B, Huang D S, Wang C, Liu K H. Feature extraction using constrained maximum variance mapping. Pattern Recognition, 2008, 41(11): 3287-3294
CrossRef Google scholar
[27]
Wang H, Chen S, Hu Z, Zheng W. Locality-preserved maximum information projection. IEEE Transactions on Neural Networks, 2008, 19(4): 571-585
CrossRef Google scholar
[28]
Zhang L, Zhang L, Zhang D. Finger-knuckle-print: a new biometric identifier. In: Proceedings of the IEEE International Conference on Image Processing. 2009, 1981-1984
[29]
Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86
CrossRef Google scholar
[30]
Belhumeur V, Hespanha J, Kriegman D. Eigenfaces vs Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Ana1ysis and Machine Intelligence, 1997, 19(7): 711-720
[31]
Ojala T, Pietikainen M, Maenpaa T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(255 KB)

Accesses

Citations

Detail

Sections
Recommended

/